Frolova J.V., Rychagov S.N., Chernov M.S., Surovtseva K.I., Kuznetsov R.A., Bolshakov I.E., 2020. Engineering-geological aspects of volcanic rocks alteration under the acid leaching in the South Kambalny thermal fields (South Kamchatka). Engineering Geology World, Vol. XV, No. 1, pp. 36–51, https://doi.org/10.25296/1993-5056-2020-15-1-36-51.
1. Belousov V.I., Sugrobov V.M., Sugrobova N.G., 1976. Geological structure and hydrogeological features of the Pauzhetskaya
hydrothermal system. In collection of papers Hydrothermal systems and thermal fields of Kamchatka. Publishing house of the Far Eastern Scientific Center, USSR Academy of Sciences, Vladivostok, pp. 23–57. (in Russian)
2. Belousov V.I., Lomonosov I.S. (eds.), 1993. The structure of the hydrothermal system. Nauka, Moscow. (in Russian)
3. Gradusov B.P., Zotov A.V., Rusinov V.L., 1975. Conditions for the formation of kaolinite and montmorillonite in modern solfatar
fields. Doklady of the USSR Academy of Sciences, Vol. 222, No. 5, pp. 1190–1193. (in Russian)
4. Drits V.A., Kossovskaya A.G., 1990. Clay minerals: smectites, mixed layer formations. Nauka, Moscow. (in Russian)
5. Eroshev-Shak V.A., Naboko S.I., Karpov G.A., Ilyin V.A., Glavatskikh S.F., 1977. Formation of clay minerals during the lowtemperature hydrothermal process (using the Uzon caldera as an example). In collection of papers Hydrothermal process in the field of tectono-magmatic activity. Nauka, Moscow, pр. 172–184. (in Russian)
6. Zharikov V.A., Runinov V.L. (eds.), 1998. Metasomatism and metasomatic rocks. Nauchniyj mir, Moscow. (in Russian)
7. Masurenkov Yu.P. (ed.), 1980. The long-lived center of endogenous activity of South Kamchatka. Nauka, Moscow. (in Russian)
8. Nekhoroshev A.S., 1959. Hydrothermal activity of the region of the Kambalny Ridge in southern Kamchatka. Bulletin of the
Volcanological Station, No. 28, pp. 23–32. (in Russian)
9. Rychagov S.N., Davletbaev R.G., Kovina O.V., 2009. Hydrothermal clays and pyrite of geothermal fields: significance in the
geochemistry of modern endogenous processes (South Kamchatka). Volcanology and Seismology, No. 2, pp. 39–55. (in Russian)
10. Rychagov S.N., Kravchenko O.V., Nuzhdaev A.A., Chernov M.S., Kartasheva E.V., Kuzmina A.A., 2020. South Kambalny Central
thermal field: structural position, hydrogeochemical and lithological characteristics. Volcanism and related processes, Proceedings of the XXIII scientific Conference dedicated to the Volcanologist's Day, Petropavlovsk-Kamchatsky, 2020. (in press) (in Russian)
11. Rychagov S.N., Sandimirova E.I., Sergeyeva A.V., Nuzhdaev I.A., 2017. Composition of ash from the 2017 Kambalny Volcano eruption. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences, Issue 36, No. 4, pp. 13–27. (in Russian)
12. Sorokin A.P. (ed.), 2001. Strategy for the development of the fuel and energy potential of the Far Eastern economic region until 2020. Dalnauka, Vladivostok. (in Russian)
13. Sugrobov V.M., 1979. Kamchatka geothermal resources, classification and predictive assessment. In collection of papers Study and use of geothermal resources in volcanic areas. Nauka, Moscow, pp. 26–35. (in Russian)
14. Frolova J.V., 2015. Rocks and laboratory methods for their study. KDU, Moscow. (in Russian)
15. Bozkurtoğlu E., Vardar M., Suner F., Zambak C., 2006. A new numerical approach to weathering and alteration in rock using a pilot area in the Tuzla geothermal area, Turkey. Engineering Geology, Vol. 87(1–2), pp. 33–47, https://doi.org/10.1016/j.enggeo.2006.06.002.
16. Coggan J.S., Stead D., Howe J.H., Faulks C.I., 2013. Mineralogical controls on the engineering behavior of hydrothermally altered granites under uniaxial compression. Engineering Geology, Vol. 160, pp. 89–102, https://doi.org/10.1016/j.enggeo.2013.04.001.
17. Frolova J., Chernov M., Rychagov S., Kuznetsov R., Surovtseva K., 2019. Alteration of volcanic rocks and changes in physicalmechanical properties on the South-Kambalny thermal field (South Kamchatka). Proceedings of 16th International Symposium on water-rock interaction (WRI-16) and 13th International Symposium on applied isotope geochemistry (1st IAGC International Conference), Tomsk, 2019, Vol. 98, article No. 08002, https://doi.org/10.1051/e3sconf/20199808002.
18. Frolova J., Ladygin V., Rychagov S., Zukhubaya D., 2014. Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril-Kamchatka island arc. Engineering Geology, Vol. 183, pp. 80–95.
19. Koros W., O'Sullivan J., Pogacnik J., O'Sullivan M., Pender M., Bromley C., 2015. Variability of geotechnical properties of materials within Wairakei subsidence bowl, New Zealand. Proceedings of 37th New Zealand geothermal Workshop, Taupo, New Zealand, 2015, рp. 1–8.
20. Lutz S.J., Zutshi A., Robertson-Tait A., Drakos P., Zemach E., 2011. Lithologies, hydrothermal alteration, and rock mechanical properties in wells 15–12 and BCH-3, Bradys hot springs geothermal field, Nevada. Geothermal Resources Council Transactions, Vol. 35, рp. 469–476.
21. Mielke Ph., Prieto A., Bignall G., Sass I., 2015. Effect of hydrothermal alteration on rock properties in the Tauhara geothermal field, New Zealand. Proceedings World geothermal Congress, Melbourne, Australia, 2015, URL: https://www.geothermalenergy.
org/pdf/IGAstandard/WGC/2015/12081.pdf (accessed: 15 February 2020).
22. Navelot V., Geraud Y., Diraison M., 2016. Physical properties of fresh or hydrothermal volcanic rocks from the west coast of Basee-Terre and Terre-de-Haup (Guadeloupe archipelago). Proceedings of the European geothermal Congress, Strasbourg, France, 2016, pp. 1–10.
23. Pola A., Crosta G., Fusi N., Barberini V., Norini G., 2012. Influence of alteration on physical properties of volcanic rocks.
Tectonophysics, Vol. 566–567, pp. 67–86.
24. Potro R., Hürlimann M., 2009. The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife. Engineering Geology, Vol. 104(1–2), pp. 135–143.
25. Rigopoulos I., Tsikouras B., Pomonis P., Hatzipanagiotou K., 2010. The influence of alteration on the engineering properties of dolerites: the examples from the Pindos and Vourinos ophiolites (Northern Greece). Rock Mechanics and Mining Sciences, Vol. 47, No. 1, pp. 69–80.
26. Shevko A.Ya., Gora M.P., Golikov N.A., Panin G.L, Bessonova E P., 2013. Using petrophysical properties of volcanic rocks in the
interpretation of geophysical data (volcano Ebeko, Kuril Islands). Open Journal of Geology, No. 3, pp. 77–80.
27. Shoen R., White D.E., Hemley J.J., 1974. Argillization by descending acide at Stemboat Springs, Nevada. Clays Clay Minerals,
Vol. 23, No. 1, pp. 1–23.
28. Sigurdsson O., Gudmundsson A., Fridleifsson G.O., Franzson H., Gudlaugsson S.Th., Stefansson V., 2000. Database on igneous rock properties in Icelandic geothermal systems. Status and unexpected results. Proceedings World geothermal Congress, pp. 2881–2886.
29. Siratovich P.A., Heap M.J., Villeneuve M.C., Cole J.W., Reuschle T., 2014. Physical property relationships of the Rotokawa andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand. Geothermal Energy, 2014, Vol. 2, article No. 10, https://doi.org/10.1186/s40517-014-0010-4.
30. Wyering L.D., Villeneuve M.C., Wallis I.C., Siratovicha P.A., Kennedy B.M., Gravley D.M., Cant J.L., 2014. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, Vol. 288, pp. 76–93.