Муминов Б.Х., Фоменко И.К., Смирнов П.В., 2022. Оценка оползневой опасности Нурекского района Таджикистана с применением метода соотношения частот. Часть 2. ГеоРиск, Том XVI, № 4, с. 24–36, https://doi.org/10.25296/1997-8669-2022-16-4-24-36.
1. Зыонг В.Б., Фоменко И.К., Нгуен Ч.К., Ви Т.Х.Л., Зеркаль О.В., Ву Х.Д., 2022. Применение статистических методов на основе
ГИС для оценки потенциального развития оползней в районе Шапа, Вьетнам. Известия Томского политехнического университета.
Инжиниринг георесурсов, Том 333, № 4, с. 126–140, https://doi.org/10.18799/24131830/2022/4/3473.
2. Муминов Б.Х., Фоменко И.К., Смирнов П.В., 2022. Оценка оползневой опасности Нурекского района Таджикистана с
применением метода соотношения частот. Часть 1. ГеоРиск, Том XVI, № 3, с. 36–48, https://doi.org/10.25296/1997-8669-2022-16-
3-36-48.
3. Asmare D., 2022. Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain,
northwestern Ethiopia. Scientific African, Vol. 19, No. 2, ID e01470, https://doi.org/10.1016/j.sciaf.2022.e01470.
4. Can R., Kocaman S., Gokceoglu C.A., 2021. Comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in
the upper basin of Ataturk Dam, Turkey. Applied Sciences, Vol. 11, No. 11, ID 4993, https://doi.org/10.3390/app11114993.
5. Constantin M., Bednarik M., Jurchescu M.C., Vlaici M., 2011. Landslide susceptibility assessment using the bivariate statistical analysis
and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Sciences, Vol. 63, No. 2, pp. 397–406,
https://doi.org/10.1007/s12665-010-0724-y.
6. Daniel M.T., Ng T.F., Abdul Kadir M.F., Pereira J.J., 2021. Landslide susceptibility modeling using a hybrid bivariate statistical and
expert consultation approach in Canada Hill, Sarawak, Malaysia. Frontiers in Earth Science, Vol. 9, ID 616225,
https://doi.org/10.3389/feart.2021.616225.
7. Das S., Sarkar S., Kanungo D.P., 2022. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP)
method in parts of Kalimpong Region of Darjeeling Himalaya. Environmental Monitoring and Assessment, Vol 194, No. 3, ID 234,
https://doi.org/10.1007/s10661-022-09851-7.
8. El Jazouli A., Barakat A., Khellouk R., 2019. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er
Rbia high basin (Morocco). Geoenvironmental Disasters, Vol. 6, No. 1, ID 3, https://doi.org/10.1186/s40677-019-0119-7.
9. Evans S.G., Roberts N.J., Ischuk A., Delaney K.B., Morozova G.S., Tutubalina О., 2009. Landslides triggered by the 1949 Khait
earthquake, Tajikistan, and associated loss of life. Engineering Geology, Vol. 109, Issues 3–4, рр. 195–212, https://doi.org/
10.1016/j.enggeo.2009.08.007.
10. Khosravi K., Pourghasemi H.R., Chapi K., Bahri M., 2016. Flash flood susceptibility analysis and its mapping using different bivariate
models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and
Assessment, Vol. 188, No. 12, ID 656, https://doi.org/10.1007/s10661-016-5665-9.
11. Kumar A., Sharma R.K., Bansal V.K., 2019. GIS-based comparative study of information value and frequency ratio method for landslide hazard zonation in a part of mid-Himalaya in Himachal Pradesh. Innovative Infrastructure Solutions, No. 4, ID 28,
https://doi.org/10.1007/s41062-019-0215-2.
12. Małka A., 2021. Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models. Natural
Hazards, Vol. 107, No. 1, pp. 639–674, https://doi.org/10.1007/s11069-021-04599-8.
13. Meena S.R., Puliero S., Bhuyan K., Floris M., Catani F., 2022. Assessing the importance of conditioning factor selection in landslide
susceptibility for the province of Belluno (Region of Veneto, northeastern Italy). Natural Hazards and Earth System Science, Vol. 22,
Issue 4, pp. 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022.
14. Mondal S., Mandal S., 2019. Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model.
Applied Geomatics, Vol. 11, No. 9, pp. 129–146, https://doi.org/10.1007/s12518-018-0248-9.
15. Pal S.C., Chowdhuri I., 2019. GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River
basin, North Sikkim, India. SN Applied Sciences, Vol. 1, ID 416, https://doi.org/10.1007/s42452-019-0422-7.
16. Panchal S., Shrivastava A.K., 2021. A comparative study of frequency ratio, Shannon’s entropy and analytic hierarchy process (AHP)
models for landslide susceptibility assessment. ISPRS International Journal of Geo-Information, Vol. 10, No. 9, ID 603,
https://doi.org/10.3390/ijgi10090603.
17. Pham B.T., Pradhan B., Bui D.T., Prakash I., Dholakia M.B., 2016. A comparative study of different machine learning methods for
landslide susceptibility assessment: a case study of Uttarakhand area (India). Environmental Modelling and Software, Vol. 84,
pp. 240–250, https://doi.org/10.1016/j.envsoft.2016.07.005.
18. Pourghasemi H.R., Mohammady M., Pradhan B., 2012. Landslide susceptibility mapping using index of entropy and conditional
probability models in GIS: Safarood Basin, Iran. CATENA, Vol. 97, pp. 71–84, https://doi.org/10.1016/j.catena.2012.05.005.
19. Rahaman A., Venkatesan M.S., Ayyamperumal R., 2021. GIS-based landslide susceptibility mapping method and Shannon entropy
model: a case study on Sakaleshapur Taluk, Western Ghats, Karnataka, India. Arabian Journal of Geosciences, Vol. 14, ID 2154,
https://doi.org/10.1007/s12517-021-08422-3.
20. Rasyid A.R., Bhandary N.P., Yatabe R., 2016. Performance of frequency ratio and logistic regression model in creating GIS based
landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, Vol. 3, No. 1, ID 19,
https://doi.org/10.1186/s40677-016-0053-x.
21. Saha S., Sarkar R., Roy J., Hembram T.K., Acharya S., Thapa G., Drukpa D., 2021. Measuring landslide vulnerability status of Chukha,
Bhutan using deep learning algorithms. Scientific Reports, Vol. 11, No. 1, ID 16374, https://doi.org/10.1038/s41598-021-95978-5.
22. Sharma L.P., Patel N., Ghose M.K., Debnath P.K., 2012. Influence of Shannon’s entropy on landslide-causing parameters for vulnerability study and zonation — a case study in Sikkim, India. Arabian Journal of Geosciences, Vol. 5, pp. 421–431, https://doi.org/10.1007/s12517-010-0205-3.
23. Singh P., Sharma A., Sur U., Rai P.K., 2021. Comparative landslide susceptibility assessment using statistical information value and
index of entropy model in Bhanupali-Beri Region, Himachal Pradesh, India. Environment Development and Sustainability, Vol. 23,
рр. 5233–5250, https://doi.org/10.1007/s10668-020-00811-0.
24. Takaku J., Tadono T., Doutsu M., Ohgushi F., Kai H., 2021. Updates of AW3D30 ALOS global digital surface model in Anterctica with
other open access datasets. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIIIB4-2021, Proceedings of the XXIV ISPRS Congress, Commission IV, Nice, France, 2021, pp. 401–408.
25. Wu Y., Li W., Wang Q., Liu Q., Yang D., Xing M., Pei Y., Yan S., 2016. Landslide susceptibility assessment using frequency ratio,
statistical index and certainty factor models for the Gangu County, China. Arabian Journal of Geosciences, Vol. 9, Issue 2, ID 84,
https://doi.org/10.1007/s12517-015-2112-0.