Стром А.Л., 2022. Прогнозирование размеров зон, подверженных воздействию каменных лавин, на основе эмпирических зависимостей. ГеоРиск, Том XVI, № 2, с. 8–20, https://doi.org/10.25296/1997-8669-2022-16-2-8-20.
1. Григорян С.С., 1979. Новый закон трения и механизм крупномасштабных горных обвалов и оползней. Доклады АН СССР,
Том 244, № 4, с. 846–849.
2. Кларк С. (мл.) (ред.), 1969. Справочник физических констант горных пород. Мир, Москва.
3. Шемякин Е.И., 1993. О подвижности больших оползней. Доклады Академии наук, Том 331, с. 742–744.
4. Aaron J., McDougall S., 2019. Rock avalanche mobility: the role of path material. Engineering Geology, Vol. 257, No. 6, pp. 105–126, https://doi.org/10.1016/j.enggeo.2019.05.003.
5. Aaron J., McDougall S., Nolde N., 2019. Two methodologies to calibrate landslide runout models. Landslides, Vol. 16, No. 6, pp. 907–920, https://doi.org/10.1007/s10346-018-1116-8.
6. Aaron J., McDougall S., Kowalski J., Mitchell A., Nolde N., 2022. Probabilistic prediction of rock avalanche runout using a numerical model. Landslides, Vol. 19, No. 6, pp. 2853–2869, https://doi.org/10.1007/s10346-022-01939-y.
7. Adushkin V.V., 2006. Mobility of rock avalanches triggered by underground nuclear explosions. In S.G. Evans, G.S. Mugnozza,
A. Strom, R.L. Hermanns (eds), Landslides from massive rock slope failure, Vol. 49. Springer, Dordrecht, The Netherlands, pp. 267–284, https://doi.org/10.1007/978-1-4020-4037-5_15.
8. Bartelt P., Bühler Y., Christen M., Deubelbeiss Y., Graf C., McArdell B.W., Salz M., Schneider M., 2013. RAMMS-DF user manual.
Publishing house of the WSL Institute for Snow and Avalanche Research SLF, Davos, Birmensdorf, Switzerland.
URL: http://ramms.slf.ch/ramms/ (дата обращения: 15.04.2022).
9. Bartelt P., Bühler Y., Christen M., Deubelbeiss Y., Salz M., Schneider M., Schumacher L., 2013. RAMMS-AV user manual. Publishing
house of the WSL Institute for Snow and Avalanche Research SLF, Davos, Birmensdorf, Switzerland. URL: http://ramms.slf.ch/ramms/ (дата обращения: 15.04.2022).
10. Corominas J., 1996. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, Vol. 33,
No. 2, pp. 260–271, https://doi.org/10.1139/T96-005.
11. Crosta G.B., Imposimato S., Roddeman D.G., 2003. Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Sciences, Vol. 3, Issue 6, pp. 523–538, https://doi.org/10.5194/nhess-3-523-2003.
12. Davies T.R., 1982. Spreading of rock avalanche debris by mechanical fluidisation. Rock Mechanics, Vol. 15, pp. 9–24,
https://doi.org/10.1007/BF01239474.
13. Fomenko I., Strom A., Zerkal O., 2020. Possibility of landslide damming in the Vakhsh River catchment and its effect on the hydraulic schemes and population. Proceedings of the XIII International Symposium on landslides, Cartagena, Colombia, 2020, ID 164.
14. Griswold J.P., Iverson R.M., 2008. Mobility statistics and automated hazard mapping for debris flows and rock avalanches (ver. 1.1. April 2014). U.S. Geological Survey Scientific Investigations report No. 2007–5276. URL: https://pubs.usgs.gov/sir/2007/5276/
(дата обращения: 15.04.2022).
15. Heim A., 1932. Bergsturz und Menschenleben. Fretz and Wasmuth, Zürich, Switzerland.
16. Howard K., 1973. Avalanche mode of motion: implications from lunar examples. Science. New Series, Vol. 180, No. 4090,
pp. 1052–1055, https://doi.org/10.1126/science.180.4090.1052.
17. Hsü K.J., 1975. Catastrophic debris streams (sturzstroms) generated by rock falls. Geological Society of America Bulletin, Vol. 86,
No. 1, pp. 129–140, https://doi.org/10.1130/0016-7606(1975)862.0.CO;2.
18. Hsü K.J., 1978. Albert Heim: observations on landslides and relevance to modern interpretations. Rockslides and avalanches, Vol. 1, pp. 71–93.
19. Hungr O., 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, Vol. 32, No. 4, pp. 610–623, https://doi.org/10.1139/t95-063.
20. Hungr O., 2006. Rock avalanche occurrence, process and modelling. In S.G. Evans, G.S. Mugnozza, A. Strom, R.L. Hermanns (eds), Landslides from massive rock slope failure, Vol. 49. Springer, Dordrecht, The Netherlands, pp. 243–266, https://doi.org/10.1007/978-1-4020-4037-5_14.
21. Hungr O., 2008. Numerical modelling of the flows and rock avalanches. Geomechanik und Tunnelbau, Vol. 1, No. 2, pp. 112–119, https://doi.org/10.1002/geot.200800010.
22. Hungr O., 2008. Simplified models of spreading flow of dry granular material. Canadian Geotechnical Journal, Vol. 45, No. 8,
pp. 1156–1168, https://doi.org/10.1139/T08-059.
23. Hungr O., Leroueil S., Picarelli L., 2014. Varnes classification of landslide types, an update. Landslides, Vol. 11, No. 2, pp. 167–194, https://doi.org/10.1007/s10346-013-0436-y.
24. Hungr O., McDougall S., 2009. Two numerical landslide dynamic analysis. Computers and Geosciences, Vol. 35, No. 5, pp. 978–992, https://doi.org/10.1016/j.cageo.2007.12.003.
25. Kilburn C.R.J., Sørensen S.-A., 1998. Runout length of sturzstroms: the control of initial conditions and of fragment dynamics. Journal of Geophysical Research: Solid Earth, Vol. 103, No. B8, pp. 17877–17884, https://doi.org/10.1029/98jb01074.
26. Kobayashi Y., 1993. A hypothesis for reduced resistance in large landslides. Safety and environmental issues in rock engineering, Proceedings of the International Symposium, Lisboa, Portugal, 1993, pp. 835–839.
27. Kobayashi Y., 1997. Long runout landslides riding on basal guided wave. Engineering geology and the environment, Proceedings of the International Symposium, Athens, Greece, 1997, pp. 761–766.
28. Legros F., 2002. The mobility of long-runout landslides. Engineering Geology, Vol. 63, No. 3–4, pp. 301–331,
https://doi.org/10.1016/S0013-7952(01)00090-4.
29. Legros F., 2006. Analysis of post-failure behaviour. In S.G. Evans, G.S. Mugnozza, A. Strom, R.L. Hermanns (eds), Landslides from
massive rock slope failure, Vol. 49. Springer, Dordrecht, The Netherlands, pp. 233–242, https://doi.org/10.1007/978-1-4020-4037-5_13.
30. Li L., Lan H., Strom A., Macciotta R., 2022. Landslide length, width, and aspect ratio: path-dependent measurement and a revisit of nomenclature. Landslides, Vol. 19, pp. 3009–3029, https://doi.org/10.1007/s10346-022-01935-2.
31. Li T., 1983. A mathematical model for predicting the extent of a major rockfall. Zeitschrift für Geomorphologie, Vol. 27, Issue 4,
pp. 473–482, https://doi.org/10.1127/zfg/27/1983/473.
32. McDougall S., Hungr O., 2005. Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, No. 42, No. 5, pp. 1437–1448, https://doi.org/10.1139/t05-064.
33. Nicoletti P.G., Sorriso-Valvo M., 1991. Geomorphic controls of the shape and mobility of rock avalanches. Geological Society of America Bulletin, Vol. 103, No. 10, pp. 1365–1373, https://doi.org/10.1130/0016-7606(1991)1032.3.CO;2.
34. Sassa K., 1988. Geotechnical model for the motion of landslides. Proceedings of the 5th International Symposium on landslides, Lausanne, Switzerland, Vol. 1, pp. 37–55.
35. Sassa K., He B., 2013. TXT-tool 3.081-1.2 landslide dynamics. In K. Sassa, B. He, M. McSaveney, N. Osamu (eds), ICL landslide
teaching tools. Publishing house of the International Consortium on Landslides-Kyoto, Kyoto, Japan, pp. 215–237.
36. Sassa K., Nagai O., Solidum R., Yamazaki Y., Ohta H., 2010. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides, Vol. 7, No. 3, pp. 219–236,
https://doi.org/10.1007/s10346-010-0230-z.
37. Shaller P.J., 1991. Analysis and implications of large Martian and Terrestrial landslides. PhD Thesis, California Institute of Technology, Pasadena, CA, USA.
38. Sheidegger A.E., 1973. On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics, Vol. 5, pp. 231–236, https://doi.org/10.1007/BF01301796.
39. Strom A., 2021. Rock avalanches: basic characteristics and classification criteria. Understanding and reducing landslide disaster risk, Proceedings of the 5th World landslide Forum, pp. 3–23, https://doi.org/10.1007/978-3-030-60319-9_1.
40. Strom A., Abdrakhmatov K., 2018. Rockslides and rock avalanches of Central Asia: distribution, morphology, and internal structure. Elsevier, Amsterdam, The Netherlands.
41. Strom A., Li L., Lan H., 2019. Rock avalanche mobility: optimal characterization and the effects of confinement. Landslides, Vol. 16, No. 2, pp. 1437–1452, https://doi.org/10.1007/s10346-019-01181-z.
42. Wen B., Guan L., 2022. A re-examination of the factors controlling mobility of large rock avalanches. Bulletin of Engineering Geology and the Environment, Vol. 81, ID 356, https://doi.org/10.1007/s10064-022-02851-4.