Шаповалов В.Л., Архипов В.В., Окост М.В., Морозов А.В., 2024. Связь георадиолокационной информации с физическими и деформационными характеристиками балластного слоя. Геотехника, Том ХVI, № 1, с. 60–73, https://doi.org/10.25296/2221-5514-2024-16-1-60-73.
1. Воробьев В.Б., Колесников В.И., Морозов А.В., 2011. Диагностика балластного слоя георадиолокационным методом. Путь и путевое хозяйство, № 8, с. 2–8.
2. Капустин В.В., Синицын А.В., 2014. Применение способов автоматизированного определения диэлектрической проницаемости среды при решении прикладных задач георадиолокации. Геофизика, № 6, с. 39–45.
3. Коларж С.А., 2019. Повышение качества контроля организационно-технологических процессов уплотнения щебеночного балласта при производстве путевых ремонтно-восстановительных работ. Дис. … канд. техн. наук, Сибирский государственный университет путей сообщения, Новосибирск.
4. Кычкин В.И., Юшков В.С., 2012. Перспективный метод отраслевой системы вибродиагностики автомобильных дорог. Молодой ученый, № 11(46), с. 65–68.
5. Шаповалов В.Л., Морозов А.В., Ермолов К.М., Явна В.А., 2015. Оптимизация ремонтов пути с глубокой очисткой балласта. Путь и путевое хозяйство, № 12, с. 25–30.
6. Явна В.А., Шаповалов В.Л., Морозов А.В., Ермолов К.М., 2015. Определение засоренности балластного материала железнодорожного пути методом георадиолокации. Инженерные изыскания, № 10–11, с. 60–65.
7. Ahmed M.U., Tarefder R.A., 2017. Incorporation of G PR and FWD into pavement mechanistic-empirical design. Construction and Building Materials, Vol. 154, рр. 1272–1282, https://doi.org/10.1016/j.conbuildmat.2017.06.105.
8. Amadore A., Bosurgi G., Pellegrino O., 2014. Classification of measures from deflection tests by means of fuzzy clustering techniques. Construction and Building Materials, Vol. 53, рр. 173–181, https://doi.org/10.1016/j.conbuildmat.2013.11.094.
9. Asli C., Feng Z.-Q., Porcher G., Rincent J.-J., 2012. Back-calculation of elastic modulus of soil and subgrade from portable falling weight deflectometer measurements. Engineering Structures, Vol. 34, рр. 1–7, https://doi.org/10.1016/j.engstruct.2011.10.011.
10. Bold R., Connolly D.P., Patience S., Lim M., Forde M.C., 2021. Using impulse response testing to examine ballast fouling of a railway trackbed. Construction and Building Materials, Vol. 274, ID 121888, https://doi.org/ 10.1016/j.conbuildmat.2020.121888.
11. Chiara F., Pereira D., Fontul S., Fortunato E., 2012. Track substructure assessment using non-destructive load tests. A Portuguese Case Study, Procedia — Social and Behavioral Sciences, Vol. 53, pp. 1129–1138, https://doi.org/ 10.1016/j.sbspro.2012.09.962.
12. Escobar E., Navarrete M.B., Gourvès R., Haddani Y., Breul P., Chevalier B., 2016. Dynamic characterization of the supporting layers in railway tracks using the dynamic penetrometer panda 3®. Procedia Engineering, Vol. 143, pp. 1024–1033, https://doi.org/10.1016/j.proeng.2016.06.099.
13. Haddani Y., Breul P., Saussine G., Navarrete M.A.B., Ranvier F., Gourvès R., 2016. Trackbed mechanical and physical characterization using PANDA®/Geoendoscopy Coupling, Procedia Engineering, Vol. 143, pp. 1201–1209, https://doi.org/10.1016/j.proeng.2016.06.118.
14. Hong W.-T., Kim S. Y., Lee S. J., Lee J.-S., 2017. Strength and stiffness assessment of railway track substructures using crosshole-type dynamic cone penetrometer. Soil Dynamics and Earthquake Engineering, Vol. 100, pp. 88–97, https://doi.org/10.1016/j.soildyn.2017.05.021.
15. Kavussi A., Qorbaninik M., Hassani A., 2019. The influence of moisture content and compaction level on LWD modulus of unbound granular base layers. Transportation Geotechnics, Vol. 20, ID 100252, https://doi.org/10.1016/j.trgeo.2019.100252.
16. Kim S.Y., Hong W.-T., Lee J.-S., 2022. Application of automated cone penetrometer for railway investigation using correlations with DCPI and deflection modulus. Research in Cold and Arid Regions, Vol. 14, Issue 4, pp. 235–238, https://doi.org/10.1016/j.rcar.2022.08.005.
17. Leng Z., Al-Qadi I.L., 2014. An innovative method for measuring pavement dielectric constant using the extended CMP method with two air-coupled GPR systems. NDT and E International, Vol. 66, pp. 90–98, https://doi.org/10.1016/j.ndteint.2014.05.002.
18. Manakov A.L., Abramov A.D., Ilinykh A.S., Bekher S.A., Igumnov A.A., Kolarz S.A., 2022. The stabilization control of the railroad track. Transportation Research Procedia, Vol. 61, pp. 681–690, https://doi.org/10.1016/j.trpro.2022.01.108.
19. Marecos V., Fontul S., Antunes M. de L., Solla M., 2017. Evaluation of a highway pavement using non-destructive tests: falling weight deflectometer and ground penetrating radar. Construction and Building Materials, Vol. 154, pp. 1164–1172, https://doi.org/10.1016/j.conbuildmat.2017.07.034.
20. Plati C., Georgouli K., Cliatt B., Loizos A., 2017. Incorporation of GPR data into genetic algorithms for assessing recycled pavements. Construction and Building Materials, Vol. 154, pp. 1263–1271, https://doi.org/ 10.1016/j.conbuildmat.2017.06.109.
21. Plati C., Loizos A., Gkyrtis K., 2020. Integration of non-destructive testing methods to assess asphalt pavement thickness. NDT and E International, Vol. 115, ID 102292, https://doi.org/ 10.1016/j.ndteint.2020.102292.
22. Ruiz H.A.M., Gräbe P.J., Maina J.W., 2019. A mechanistic-empirical method for the characterisation of railway track formation. Transportation Geotechnics, Vol. 18, pp. 10–24, https://doi.org/ 10.1016/j.trgeo.2018.10.003.
23. Saarenketo T., 2009. Chapter 13 — NDT transportation. In H.M. Jol (ed.), Ground penetrating radar theory and applications, Elsevier, The Netherlands, pp. 393–444.
24. Wang L., Gu X., Liu Z., Wu W., Wang D., 2022. Automatic detection of asphalt pavement thickness: a method combining GPR images and improved Canny algorithm. Measurement, Vol. 196, ID 111248, https://doi.org/10.1016/j.measurement.2022.111248.
25. Yavna V.A., Shapovalov V.L., Morozov A.V., Ermolov K.M., 2015. Application of microwave methods for the determination of ballast material clogging. Geophysics 2015 — 11th EAGE International scientific and practical Conference and Exhibition on engineering and mining geophysics, Gelendzhik, 2015, p. 33, https://doi.org/10.3997/2214-4609.201412252.
26. Yavna V., Shapovalov V., Kruglikov A., Kochur A., Ermolov Y., 2014. Monitoring of railway infrastructure objects. In С. Feng (ed.), Construction and maintenance of railway infrastructure in complex environment. China Railway publishing house, Hong Kong, China,
pp. 109–113.
27. Khakiev Z., Shapovalov V., Kruglikov A., Yavna V., 2014. GPR determination of physical parameters of railway structural layers. Journal of Applied Geophysics, Vol. 106, pp. 139–145, https://doi.org/10.1016/j.jappgeo.2014.04.017.
28. Zhao W., Wu W., Yang Q., Liu J., 2022. Accuracy analysis of modulus results considering the whole process of modulus back-calculation — based on GPR and FWD. Construction and Building Materials, Vol. 348, ID 128671, https://doi.org/10.1016/j.conbuildmat.2022.128671.
29. Zhao W., Yang Q., Wu W., Liu J., 2022. Improving the accuracy of pavement structural quality assessment by correcting numerical hypothetical model of modulus back-calculation through GPR. Construction and Building Materials, Vol. 333, ID 127422, https://doi.org/10.2139/ssrn.4018838.