Seredin V.V., Lunegov I.V., Fedorov M.V., Medvedeva N.A., 2019. Changes in adhesion forces of montmorillonite and kaolin clays at stress pressures. Engineering Geology World, Vol. XIV, No. 2, pp. 44-59, https://doi.org/10.25296/1993-5056-2019-14-2-44-59.
1. Boldyrev V.V., 2006. Mechanochemistry and mechanical activation of solids. Uspekhi Khimii, Vol. 75, No. 3, pp. 203–216. (in Russian)
2. Galkin V.I., Rastegaev A.V., Galkin S.V., 2001. Probabilistic-statistical estimation of the neftehazonosnost local structures. Publishing house of the Ural Branch of Russian Academy of Sciences, Ekaterinburg. (in Russian)
3. Goylo E.A., Kotov N.V., Frank-Kamenetsky V.A., 1966. An experimental study of the effect of pressure and temperature on the crystal structures of kaolinite, illite, and montmorillonite. In collection of papers Physical methods for the study of sedimentary rocks. Science, Moscow, pp. 123–129. (in Russian)
4. Grigoriev M.V., Molchunova L.M., Buyakova S.P., Kulkov S.N., 2013. The effect of mechanical treatment on the structure and properties of powder of non-stoichiometric titanium carbide. Izvestiya vysshih uchebnyh zavedenij. Physics, Vol. 56, No. 7/2, pp. 206–210.
(in Russian)
5. Karasal B.K., Sapelkina T.V., 2012. Improving the adsorption properties of clay rocks of Tuva, depending on activation methods. Actual issues of modern science, No. 5, pp. 158–162. (in Russian)
6. Nichiporenko S.P., Kruglitsky N.N., Panasevich A.A., Khilko V.V., 1974. Physico-chemical mechanics of dispersed minerals, in N.N. Kruglitsky (ed.). Naukova Dumka, Kiev. (in Russian)
7. Osipov V.I., 2011. Nanofilms of adsorbed water in clays, the mechanism of their formation and properties. Geoekologiya, No. 4,
pp. 291–305. (in Russian)
8. Osipov V.I., Sokolov V.N., 2013. Clays and their properties. Composition, structure and formation of properties. GEOS, Moscow. (in Russian)
9. Pushkareva G.I., 2000. The effect of thermal processing of brucite on its sorption properties. Physical and Technical Problems of Mining, No. 6, pp. 90–93. (in Russian)
10. Sapronova J.A., Lesovik V.S., Gomez M.Zh., Shaykhieva K.I., 2015. Sorption properties of UV-activated clays of the Angolan deposits. Vestnik Kazanskogo tekhnologicheskogo universiteta, Vol. 18, No. 1, pp. 91–93. (in Russian)
11. Seredin V.V., Rastegaev A.V., Medvedeva N.A., Parshina T.Yu., 2017. Effect of pressure on the active surface area of clayey soil particles. Inzhenernaya geologiya, No. 3, pp. 18–27. (in Russian)
12. Seredin V.V., Fedorov M.V., Lunegov I.V., Medvedeva N.A., 2018. Regularities in the change of adhesion forces on the surface of particles of kaolin clay, which is subject to compression. Inzhenernaya geologiya, Vol. XIII, No. 3, pp. 8–18, https://doi.org/10.25296/1993-5056-2018-13-3-8-18. (in Russian)
13. Frank-Kamenetsky V.A., Kotov N.V., Goilo E.A., 1970. Changes in the structure of clay minerals under various thermodynamic conditions. In collection of papers X-ray of mineral raw materials. Nedra, Moscow, No. 7, pp. 166–174. (in Russian)
14. Frank Kamenetsky V.A. (ed.), 1983. Radiography of the main types of rock-forming minerals (layered and frame silicates). Nedra, Leningrad. (in Russian)
15. Shlykov V.G., 2000. The use of the structural characteristics of clay minerals to assess the physico-chemical properties of dispersed soils. Geoekologiya, No. 1, pp. 43–52. (in Russian)
16. Shlykov V.G., 2006. X-ray analysis of the mineral composition of dispersed soils. GEOS, Moscow. (in Russian)
17. Ata A., Rabinovich Y.I., Singh R.K., 2002. Role of surface roughness in capillary adhesion. Journal of Adhesion Science and Technology, Vol. 16, Issue 4, рр. 337–346, https://doi.org/10.1163/156856102760067145.
18. Biggs S., Cain R.G., Dagastine R.R., Page N.W., 2002. Direct measurements of the adhesion between a glass particle and a glass surface in a humid atmosphere. Journal of Adhesion Science and Technology, Vol. 16, Issue 7, pp. 869–885, https://doi.org/10.1163/156856102760136445.
19. Çolak A., Wormeester H., Zandvliet H.J.W., Poelsema B., 2012. Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Applied Surface Science, Vol. 258, Issue 18, pp. 6938–6942, https://doi.org/10.1016/j.apsusc.2012.03.138.
20. Ehrenberg S.N., Aagaard P., Wilson M.J., Fraser A.R., Duthie D.M.L., 1993. Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, Vol. 28, Issue 3, pp. 325–352, https://doi.org/10.1180/claymin.1993.028.3.01.
21. Fritzsche J., Peuker U.A., 2015. Wetting and adhesive forces on rough surfaces — an experimental and theoretical study. Procedia Engineering, Vol. 102, pp. 45–53.
22. Galan E., Aparicio P., La Iglesia Á., 2006. The effect of pressure on order/disorder in kaolinite under wet and dry conditions. Clays and Clay Minerals, Vol. 54, No. 2, pp. 230–239, https://doi.org/10.1346/CCMN.2006.0540208.
23. Guo Y., Yu X., 2017. Characterizing the surface charge of clay minerals with Atomic Force Microscope (AFM). AIMS Materials Science, Vol. 4, No. 3, pp. 582–593, https://doi.org/10.3934/matersci.2017.3.582.
24. Jones R., Pollock H.M., Cleaver J.A.S., Hodges C.S., 2002. Adhesion forces between glass and silicon surfaces in air studied by AFM: effects of relative humidity, particle size, roughness, and surface treatment. Langmuir, Vol. 18, No. 21, pp. 8045–8055, https://doi.org/10.1021/la0259196.
25. Klaassen A., Liu F., Van den Ende D., Mugele F., Siretanu I., 2017. Impact of surface defects on the surface charge of gibbsite nanoparticles. Nanoscale, Vol. 9, No. 14, pp. 4721–4729, https://doi.org/10.1039/C6NR09491K.
26. Kossovskaya A.G., Shutov V.D., 1965. Facies of regional epi- and metagenesis. International Geology Review, Vol. 7, No. 7,
pp. 1157–1167, https://doi.org/10.1080/00206816509474768.
27. Kumar N., Zhao C., Klaassen A., Van den Ende D., Mugele F., Siretanu I., 2016. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy. Geochimica et Cosmochimica Acta, Vol. 175, pp. 100–112, https://doi.org/10.1016/j.gca.2015.12.003.
28. La Iglesia A., 1993. Pressure induced disorder in kaolinite. Clay Minerals, Vol. 28, Issue 2, pp. 311–319, https://doi.org/10.1180/claymin.1993.028.2.11.
29. Leite F.L., Ziemath E.C., Oliveira Jr. O.N., Herrmann P.S.P., 2005. Adhesion forces for mica and silicon oxide surfaces studied by atomic force spectroscopy (AFS). Microscopy and Microanalysis, Vol. 11, Issue S03, pp. 130–133, https://doi.org/10.1017/S1431927605051068.
30. Peng Zh., Chen S.H., 2011. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm. Physical Review E, Vol. 83, Issue 5, pp. 051915, https://doi.org/10.1103/PhysRevE.83.051915.
31. Persson B.N.J., Tosatti E., 2001. The effect of surface roughness on the adhesion of elastic solids. The Journal of Chemical Physics, Vol. 115, No. 12, pp. 5597–5610, https://doi.org/10.1063/1.1398300.
32. Range K.J., Range A., Weiss A., 1969. Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloysite minerals. Proceedings of International Clay Conference, Tokyo, Japan, 1969, Vol. 1, pp. 3–13.
33. Ruiz Cruz M.D., Andreo B., 1996. Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Minerals, Vol. 31, Issue 2, pp. 133–152, https://doi.org/10.1180/claymin.1996.031.2.01.
34. Seredin V.V., Khrulev A.S., 2016. Variations of temperature in specimens of rocks and geomaterials under failure. Journal of Mining Science, Vol. 52, No. 4, pp. 683–688, https://doi.org/10.1134/S1062739116041081
35. Seredin V.V., Rastegaev A.V., Galkin V.I., Isaeva G.A., Parshina T.Yu., 2018. Changes of energy potential on clay particle surfaces at high pressures. Applied Clay Science, Vol. 155, pp. 8–14, https://doi.org/10.1016/j.clay.2017.12.042.
36. Seredin V.V., Rastegayev A.V., Panova E.G., Medvedeva N.A., 2017. Changes in physical-chemical properties of clay under compression. International Journal of Engineering and Applied Sciences, Vol. 4, Issue 3, pp. 22–29.
37. Tombacz E., Szekeres M., 2006. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Applied Clay Science, Vol. 34, Issue 1–4, pp. 105–124, https://doi.org/10.1016/j.clay.2006.05.009.
38. Zhou Z., Gunter W.D., 1992. The nature of the surface charge of kaolinite. Clays and Clay Minerals, Vol. 40, Issue 3, pp. 365–368, https://doi.org/10.1346/CCMN.1992.0400320.
39. Zhu X., Zhu Z., Lei X., Yan C., 2016. Defects in structure as the sources of the surface charges of kaolinite. Applied Clay Science,
Vol. 124–125, pp. 127–136, https://doi.org/10.1016/j.clay.2016.01.033.