
DOI: https://doi.org/10.25296/1997-8669-2022-16-1-32-55
ОБЕСПЕЧЕНИЕ УСТОЙЧИВОЙ БЕЗОПАСНОСТИ МОРСКИХ ПОБЕРЕЖИЙ ПРИ ВОЗДЕЙСТВИИ ЦУНАМИ

Клячко М.А., Зайцев А.И., Талипова Т.Г., Пелиновский Е.Н.
Статья посвящается 70-летию самого большого стихийного бедствия в российской истории — трагическому цунами 5 ноября 1952 г. на северных Курильских о-вах и п-ове Камчатка. В качестве доказательства высокой опасности цунами для российских морских побережий приводятся примеры исторических цунами 1737 и 1923 гг., высота наката которых на берег достигала 30 м. Целью настоящей статьи является упорядоченное описание способов, механизмов и инструментов, с помощью которых рекомендуется уменьшать цунами-бедствия, обеспечивая устойчивую безопасность морских побережий. Обсуждается используемый для этого программно-блочный подход, описаны типовая программа и блок-схема превентивного обеспечения
безопасности урбанизированных территорий, подверженных стихийным угрозам. Рассмотрена разработанная шкала бедствий (DIsaster MAgnitude — DIMAK). Описываются способы и инструментарий анализа и управления цунами-риском. Подчеркивается, что основные из них — это уменьшение уязвимости населения, конструктивной и функциональной уязвимости зданий, планировочной уязвимости застройки, а также экологической уязвимости. Особое внимание уделено анализу и управлению цунами-риском за счет использования норм для проектирования цунамистойких зданий и сооружений. В настоящее время вероятные бедствия на цунамиопасных побережьях российских дальневосточных, Черного и Каспийского морей уменьшаются инженерами и градостроителями, которые реализуют подходы и решения, изложенные в СП 292.1325800.2017 «Здания и сооружения в цунамиопасных районах. Правила проектирования», а также службой предупреждения о цунами, которая функционирует пока только в Сахалинской области, Камчатском и Приморском краях. Описываются существующие недостатки указанного нормативного технического документа. Предлагаются рекомендации по совершенствованию и развитию комплексного программного подхода для устойчивой цунамибезопасности на морских побережьях России.
1. Беляев Н.Д., Лебедев В.В., Нуднер И.С., Семенов К.К., Щемелинин Д.И., 2022. Методика расчета экстремальных нагрузок на плавучий объект от прямого воздействия волн цунами на основе экспериментальных исследований. Гидротехническое строительство, № 3, с. 46–50, http://dx.doi.org/10.34831/EP.2022.31.74.007.
2. Гусяков В.К., 2017. Методы и проблемы оценки цунамиопасности морских побережий. Фундаментальная и прикладная гидрофизика, Том 10, № 3, с. 26–38, https://doi.org/10.7868/S2073667317030029.
3. Диденкулова И.И., Пелиновский Е.Н., 2009. Цунамиподобные явления в российских внутренних водоемах. Фундаментальная и прикладная гидрофизика, Том 2, № 3, с. 52–64.
4. Иващенко А.И., Гусяков В.К., Джумагалиев A., Йех Г., Жуков Л.Д., Золотухин Н.Д., Кайстренко В.М., Като Л.Н., Клочков А.А., Королев Ю.П., Кругляков А.А., Куликов Е.А., Куракин В.М., Левин Б.В., Пелиновский Е.Н., Поплавский А.А., Титов В.В., Харламов В.В., Храмушин В.М., Шелтинг Е.В., 1996. Шикотанское цунами 5 октября 1994 г. Доклады Академии наук, Том 348, № 4,
с. 532–538.
5. Кантаржи И.Г., Акулинин А.Н., 2017. Физическое моделирование воздействия волн цунами на береговые сооружения. Фундаментальная и прикладная гидрофизика, Том 10, № 3, с. 78–90, https://doi.org/10.7868/S2073667317030078.
6. Клячко М.А., 1993. Концепция уменьшения последствий стихийных бедствий на урбанизированных территориях и эталонная программа подготовки к землетрясениям. Сейсмостойкое строительство. Безопасность сооружений, № 5, с. 5–10.
7. Клячко М.А., 2020. Современные уроки Нефтегорского землетрясения. ГеоРиск, Том XIV, № 4, с. 30–40, https://doi.org/10.25296/1997-8669-2020-14-4-30-40.
8. Крашенинников С.П., 1949. Описание земли Камчатки: с приложением рапортов, донесений и других неопубликованных материалов. Изд-во Главсевморпути, Москва — Ленинград.
9. Ларионов В.И., 1998. Теоретические основы реагирования на чрезвычайные ситуации. Оперативное прогнозирование инженерной обстановки в чрезвычайных ситуациях, под ред. С.К. Шойгу. Папирус, Москва, с. 7–21.
10. Махинов А.Н., Ким В.И., Остроухов А.В., Матвеенко Д.В., 2019. Крупный оползень в долине реки Бурея и цунами в водохранилище Буреинской ГЭС. Вестник ДВО РАН, № 2(204), с. 35–44, https://doi.org/10.25808/08697698.2019.204.2.004.
11. Пинегина Т.К., Разжигаева Н.Г., 2013. Исследования палеоцунами на дальневосточном побережье России.
В кн. под ред. Л.И. Лобковского, Мировой океан. Том 1. Геология и тектоника океана. Катастрофические явления в океане. Научный мир, Москва, с. 488–498.
12. Рутман Ю.Л., Фильков В.Ю., 2017. Определение коэффициента динамичности при воздействии бора на оградительное сооружение гравитационного типа. Фундаментальная и прикладная гидрофизика, Том 10, № 3, с. 91–96, https://doi.org/10.7868/S207366731703008X.
13. Смышляев А.А., 2003. Ночь океана. В сб. статей Время красной рыбы. Новая книга, Петропавловск-Камчатский, с. 249–320.
14. Соловьев С.Л., 1968. Проблема цунами и ее значение для Камчатки и Курильских островов.
В сб. статей под ред. М.А. Садовского, А.А. Трескова, Проблема цунами. Наука, Москва, с. 7–50.
15. Фиговский О.Л., Бейлин Д.А., Пономарев А.Н., 2012. Успехи применения нанотехнологий в строительных материалах. Нанотехнологии в строительстве: научный Интернет-журнал, Том 4, № 3, с. 6–21.
16. Asgarizadeh Z., Gifford R., 2022. Community and psychological barriers to tsunami preparation. Natural Hazards, Vol. 112,
pp. 1321–1336, https://doi.org/10.21203/rs.3.rs-762366/v1.
17. Aytore B., Yalciner A.C., Zaytsev A., Cankaya Z., Suzen M.C., 2016. Assessment of tsunami resilience of Haydarpaşa Port in the Sea of Marmara by high-resolution numerical modeling. Earth, Planets and Space, Vol. 68, ID 139,
https://doi.org/10.1186/s40623-016-0508-z.
18. Basili R., Brizuela B., Herrero A., Iqbal S., Lorito S., Maesano F., Murphy S., Perfetti P., Romano F., Scala A., Selva J., Taroni M.,
Tiberti M.M., Thio H.K., Tonini R., Volpe M., Glimsdal S., Harbitz C.B., Løvholt F., Baptista M.A., Carrilho F., Matias L.M., Omira R., Babeyko A.Y., Hoechner A., Gürbüz M., Pekcan O., Yalçıner A., Canals M., Lastras G., Agalos A., Papadopoulos G., Triantafyllou I., Benchekroun S., Agrebi Jaouadi H., Ben Abdallah S., Bouallegue A., Hamdi H., Oueslati F., Amato A., Armigliato A., Behrens J., Davies G., Di Bucci D., Dolce M., Geist E., Gonzalez Vida J.M., González M., Macías Sánchez J., Meletti C., Ozer Sozdinler C., Pagani M., Parsons T., Polet J., Power W., Sørensen M.B., Zaytsev A., 2021. The making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18). Frontiers Earth Science, Vol. 8, ID 616594, https://doi.org/10.3389/feart.2020.616594.
19. Bourgeois J., Pinegina T.K., 2018. The 1997 Kronotsky earthquake and tsunami and their predecessors, Kamchatka, Russia. Natural Hazards and Earth System Sciences, Vol. 18, No. 1, pp. 335–350, https://doi.org/10.5194/nhess-18-335-2018.
20. Castro S., Poulos A., Herrera C.J., de la Llera M.J.C., 2019. Modeling the impact of earthquake-induced debris on tsunami evacuation times of coastal cities. Earthquake Spectra, Vol. 35, pp. 137–158, https://doi.org/10.1193/101917EQS218M.
21. Chang S.E., Adams B.J., Alder J., Berke P., Chuenpagdee R., Ghosh S., Wabnitz C.C.C., 2006. Coastal ecosystems and tsunami protection after the December 2004 Indian Ocean tsunami. Earthquake Spectra, Vol. 22, No. S3, pp. 863–887, https://doi.org/10.1193/1.2201971.
22. Chen C., Mostafizi A., Wang H., Cox D., Cramer L., 2022. Evacuation behaviors in tsunami drills. Natural Hazards, Vol. 112,
pp. 845–871, https://doi.org/10.1007/s11069-022-05208-y.
23. Chock G., Carden L.P., Robertson I.N., Olsen M.J., Yu G., 2013. Tohoku tsunami-induced building failure analysis with implications for USA tsunami and seismic design codes. Earthquake Spectra, Vol. 29, No. S1, pp. 99–126, https://doi.org/10.1193/1.4000113.
24. Dogan G.G., Yalciner A.C., Yuksel Y., Ulutaş E, Polat O., Güler I., Şahin C., Tarih A., Kânoğlu U., 2021. The 30 October 2020 Aegean Sea tsunami: post-event field survey along Turkish Coast. Pure and Applied Geophysics, Vol. 178, No. 1, pp. 785–812, https://doi.org/10.1007/s00024-021-02693-3.
25. Edwards C., 2006. Thailand lifelines after the December 2004 Great Sumatra earthquake and Indian Ocean tsunami. Earthquake Spectra, Vol. 22, pp. 641–659, https://doi.org/10.1193/1.2204931.
26. Geist E.L., Parsons T., 2006. Probabilistic analysis of tsunami hazards. Natural Hazards, Vol. 37, pp. 277–314, https://doi.org/10.1007/s11069-005-4646-z.
27. Gibbons S.J., Lorito S., Macías J., Løvholt F., Selva J., Volpe M., Sánchez-Linares C., Babeyko A., Brizuela B., Cirella A., Castro M., de la Asunción M., Lanucara P., Glimsdal S., Lorenzino M.C., Nazaria M., Pizzimenti L., Romano F., Scala A., Tonini R., Manuel González
Vida J., Vöge M., 2020. Probabilistic tsunami hazard analysis: high performance computing for massive scale inundation simulations. Frontiers Earth Science, Vol. 8, ID 591549, https://doi.org/10.3389/feart.2020.591549.
28. Gonzalez F., Geist E.L., Jaffe B., Kanoglu U., Mofjeld H.O., Synolakis C.E., Titov V.V., Arcas D.R., Bellomo D., Carlton D., Horning T., Johnson J., Newman J., Parsons T., Peters R., Peterson C.D., Priest G., Venturato A., Weber J., Wong F.L., Yalciner A., 2009. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal Geophysical Research, Vol. 114, Issue C11, ID 023, https://doi.org/10.1029/2008JC005132.
29. Gusiakov V.K., Kikhtenko V.A., Chubarov L.B., Shokin Y.I., 2019. Regional tsunami hazard maps for the Far East coast of Russian Federation built in the framework of the PTHA methodology. Computational Technologies, Vol. 24, No. 1, pp. 55–72, https://doi.org/10.25743/ICT.2019.24.1.005.
30. Gusiakov V.K., Makhinov A., 2021. December 11, 2018 landslide and 90-m icy tsunami in the Bureya water reservoir. In K. Sassa,
M. Mikoš, S. Sassa, P.T. Bobrowsky, K. Takara, K. Dang (eds), Understanding and reducing landslide disaster risk. Vol. 1. Springer, Cham, Switzerland, pp. 351–360, https://doi.org/10.1007/978-3-030-60196-6_25.
31. Ishihara K., 1996. Soil behavior in earthquake geotechnics. Oxford University Press, New York, NY, USA.
32. Iuchi K., Johnson L.A., Olshansky P.B., 2013. Securing Tohoku’s future: planning for rebuilding in the first year following the Tohoku-Oki earthquake and tsunami. Earthquake Spectra, Vol. 29, No. S1, pp. 479–499, https://doi.org/10.1193/1.4000119.
33. Iwasaki T., Tatsuoka F., Tokida K., Yasuda S., 1978. A practical method for assessing soil liquefaction potential base on case studies at various sites in Japan. Proceeding of the 2nd International Conference on microzonation for safer construction research and application, San Francisco, CA, USA, 1978, pp. 885–896.
34. Kaistrenko V., Pinegina T., Klyachko M., 2003. Evaluation of tsunami hazard for the Southern Kamchatka coast using historical and paleotsunami data. In A.C. Yalciner, E. Pelinovsky, E. Okal, C.E. Synolakis (eds), Submarine landslides and tsunamis. Kluwer Academic Publishers, Alphen aan den Rijn, The Netherlands, pp. 217–228, https://doi:10.1007/978-94-010-0205-9_22.
35. Kantarzhi I.G., Gubina N.A., Gusarov R.N., 2021. Effects of long waves on coastal hydraulic structures. Power Technology and Engineering, Vol. 55, No. 2, pp. 219–222, https://doi.org/10.1007/s10749-021-01343-x.
36. Keller A.Z., Wilson H.C., 1989. An evaluation of chemically related disasters using the Bradford disaster scale. ICHemE Symposium Series, No. 124, pp. 1–13.
37. Klyachko M.A., 1993. Application of GIS and scenario techniques to urban areas earthquake risk analysis and mitigation. Earthquake engineering, Proceedings of the 17th European regional Seminar, Haifa, Israel, 1993, pp. 552–555.
38. Klyachko M.A., 1994. Arguments for earthquake hazard mitigation in the Kamchatka Region. In B.E. Tucker, M. Erdik, C.N. Hwang (eds), Issues in urban earthquake risk. Springer, Dordrecht, The Netherlands, pp. 215–219, https://doi.org/10.1007/978-94-015-8338-1_13.
39. Klyachko M., 1995. The development of GIS, EQ-DISC and DIMAK as the best tools for seismic risk analysis on the urban areas. Proceeding of 5th International Conference on seismic zonation, Vol. 1, Nice, France, 1995, pp. 158–165.
40. Klyachko M., Klyachko I., 1996. The DIMAK scale for disaster magnitude measuring in service. Natural disaster reduction, Proceeding of the ASCE Conference, Washington, D.C., USA, 1996, pp. 76–77.
41. Klyachko M., Maksimov V., Nudner I., Filkov V., 2014. On regional standard “Buildings, structures and areas. Safety requirements under tsunami impact”. Proceeding of the 10th U.S. National Conference on earthquake engineering frontiers of earthquake engineering, Anchorage, AK, 2014. URL: https://docs.yandex.ru/docs/view?tm=1673113676&tld=ru&lang=en&name=10NCEE-000441.pdf (дата обращения: 08.01.2022).
42. Klyachko M.A., Raisman M.M., 1995. Medical aspects of disaster preparedness to strong earthquakes on the Kamchatka. Prehospital and disaster medicine, Abstracts of the Ninth World Congress on disaster and emergency medicine, Vol. 10, No. 3, supplement S2, ID 054, p. 46, https://doi.org/10.1017/S1049023X00501241.
43. Kotitsyna S.S., Kantarzhi I.G., 2021. Destructions in the port caused by tsunami waves. Power Technology and Engineering, Vol. 55, No. S1, pp. 20–25, https://doi.org/10.1007/s10749-021-01313-3.
44. Kuprin A.V., Novakov A.D., Kantarzhi I.G., Gubina N.A., 2021. Local and general scours caused by tsunami waves. Power Technology and Engineering, Vol. 54, No. 6, pp. 836–840, https://doi.org/10.1007/s10749-021-01296-1.
45. Maruyama Y., Yamazaki F., Eeri M., Matsuzaki S., Miura H., Estrada M., 2012. Evaluation of building damage and tsunami inundation based on satellite images and GIS Data following the 2010 Chile earthquake. Earthquake Spectra, Vol. 28, No. S1, pp. 165–178, https://doi.org/10.1193/1.4000023.
46. Mori N., Cox D., Yasuda T., Mase H., 2013. Overview of the 2011 Tohoku earthquake tsunami damage and its relation to coastal protection along the Sanriku Coast. Earthquake Spectra, Vol. 29, No. S1, pp. 127–143, https://doi.org/10.1193/1.4000118.
47. Nudner I., Klyachko M., Maximov V., Filkov V., 2012. About regional standard “Buildings, structures, and areas. Safety requirements under tsunami impact”. Proceedings of 15th World Conference on earthquake engineering, Vol. 11, Lisbon, Portugal, 2012,
рp. 8590–8598.
48. Okal E.A., 2011. Tsunamigenic earthquakes: past and present milestones. Pure and Applied Geophysics, Vol. 168, No. 6–7,
pp. 969–995, https://doi.org/10.1007/s00024-010-0215-9.
49. Papadopoulos G., Imamura F., 2001. A proposal for a new tsunami intensity scale. Proceedings of the 20th International tsunami Conference, Seattle, WA, USA, 2001, No. 5–1, pp. 569–577.
50. Park H., Cox D.Y., Barbosa A.R., 2017. Comparison of inundation depth and momentum flux based fragilities for probabilistic tsunami damage assessment and uncertainty analysis. Coastal Engineering, Vol. 122, No. 2, pp. 10–26, https://doi:10.1016/j.coastaleng.2017.01.008.
51. Robertson I., Chock G., Eeri M., Morla J., 2012. Structural analysis of selected failures caused by the 27 February 2010 Chile tsunami. Earthquake Spectra, Vol. 28, No. S1, pp. 215–243, https://doi.org/10.1193/1.4000035.
52. Ruangrassamee A., Yanagisawa H., Foytong P., Lukkunaprasit P., Koshimura S., Imamura F., 2006. Investigation of tsunami-induced damage and fragility of buildings in Thailand after the December 2004 Indian Ocean tsunami. Earthquake Spectra, Vol. 22, No. S3,
pp. 377–401, https://doi.org/10.1193/1.2208088.
53. Scawthorn C., Ono Y., Iemura H., Ridha M., Purwanto B., 2006. Performance of lifelines in Banda Aceh, Indonesia, during the December 2004 Great Sumatra earthquake and tsunami. Earthquake Spectra, Vol. 22, No. S2, pp. 511–544, https://doi.org/10.1193/1.2206807.
54. Seed H., Idris I.M., 1971. Simplified procedures for evaluating soil li liquefaction potential. Journal of Soil Mechanics and Foundation Engineering, Vol. 97, No. SM9, pp. 1249–1273.
55. Sjöberg F., 2014. The fly trap, translated from Sweden by T. Teal. Particular, London.
56. Suppasri A., Charvet I., Imai K., Imamura F., 2015. Fragility curves based on data from the 2011 Tohoku-Oki tsunami in Ishinomaki City, with discussion of parameters influencing building damage. Earthquake Spectra, Vol. 31, No. 2, pp. 841–868, https://doi.org/10.1193/053013EQS138M.
57. Triantafyllou I., Gogou M., Mavroulis S., Lekkas E., Papadopoulos G.A., Thravalos M., 2021. The tsunami caused by the 30 October 2020 Samos (Aegean Sea) Mw7.0 earthquake: hydrodynamic features, source properties and impact assessment from post-event field survey and video records. Journal of Marine Science and Engineering, Vol. 9, ID 68, https://doi.org/10.3390/jmse9010068.
58. Wood N.J., Church A., Frazier T., Yamal B., 2007. Variations in community exposure and sensitivity to tsunami hazards in the State of Hawai’i. Publishing house of the Geological Survey (U.S.), Reston, VA, USA, https://doi.org/10.3133/sir20075208.
59. Zaytsev A., Kurkin A., Pelinovsky E., Yalciner A.C., 2019. Numerical tsunami model NAMI-DANCE. Science of Tsunami Hazards,
Vol. 38, No. 4, pp. 151–168.
60. Zaytsev A.I., Pelinovsky E.N., Kurkin A.A., Pronin P.I., Yalciner A., Susmoro H., Dogan G., Prasetya G., Hidayat R.,
Dolgikh G.I., Dolgikh S.G., Zahibo N., 2019. Generation of the 2018 tsunami on Sulawesi Island: possible sources. Doklady Earth Sciences, Vol. 486, No. 1, pp. 588–592, https://doi.org/10.1134/S1028334X19050295.
КЛЯЧКО М.А.*
АНО «Региональный альянс для анализа и уменьшения бедствий», г. Санкт-Петербург, Россия, marfazhirkina@yandex.ru
Адрес: Свердловская наб., д. 62, литера А, г. Санкт-Петербург, 195027, Россия
ЗАЙЦЕВ А.И.
Специальное конструкторское бюро средств автоматизации морских исследований ДВО РАН, г. Южно-Сахалинск, Россия, aizatysev@mail.ru
Адрес: ул. Алексея Максимовича Горького, д. 25, г. Южно-Сахалинск, 693023, Россия
ТАЛИПОВА Т.Г.
Федеральный исследовательский центр Институт прикладной физики РАН, г. Нижний Новгород, Россия, tgtalipova@mail.ru
Адрес: ул. Ульянова, д. 46, г. Нижний Новгород, 603950, Россия
Тихоокеанский океанологический институт им. В.И. Ильичева ДВО РАН, г. Владивосток, Россия
Адрес: ул. Балтийская, д. 43, г. Владивосток, 690041, Россия
ПЕЛИНОВСКИЙ Е.Н.
Федеральный исследовательский центр Институт прикладной физики РАН, г. Нижний Новгород, Россия, pelinovsky@appl.sci-nnov.ru
Тихоокеанский океанологический институт им. В.И. Ильичева ДВО РАН, г. Владивосток, Россия
ENSURING THE SUSTAINABLE SAFETY OF SEA COASTS UNDER THE INFLUENCE OF A TSUNAMI

Klyachko M.A., Zaytsev A.I., Talipova T.G., Pelinovsky E.N.
The paper is dedicated to the 70th anniversary of the biggest natural disaster in Russian history — the tragic tsunami of 5 November 1952 on the Northern Kuril Islands and the Kamchatka Peninsula. As evidence of the high tsunami hazard for the Russian sea coasts, there are examples of the historical tsunamis of 1737 and 1923 during which the height of the waves reached 30 m. The purpose of the present paper is to describe orderly the ways, mechanisms, and tools recommended to reduce tsunami disasters ensuring the sustainable sea coast safety. The program and block approach to ensuring the sustainable sea coast safety is discussed. A typical program and a block diagram of the preventive safety of urban areas subject to natural hazards are described. The developed disaster scale (DIsaster MAgnitude — DIMAK) is given. Methods and toolboxes for analysis and management of tsunami risk are described. It is emphasized that the main tool for managing the tsunami risk is to reduce the human vulnerability, the structural and functional vulnerability of buildings, the planning vulnerability of the built environment, as well as environmental vulnerability. A special attention is paid to the analysis and management of tsunami risk through the use of standards for the design of tsunami-resistant buildings and structures. Currently, probable tsunami disasters on the coasts of the Russian Far Eastern seas, the Black and Caspian seas are mitigated by engineers and city planners, who are implementing the approaches and solutions of the SP 292.1325800.2017 “Buildings and structures on tsunami hazardous areas. Regulations of design”, and also by means of the tsunami warning service, which so far operates only in the Kamchatka and Primorye territories and in the Sakhalin Region. The existing disadvantages of this document are described. Recommendations for the improvement and development of an integrated program approach for sustainable tsunami safety on the Russian coasts are proposed.
1. Belyaev N.D., Lebedev V.V., Nudner I.S., Semenov K.K., Shchemelinin D., 2022. Method for calculating extreme loads on a floating object from the direct impact of tsunami waves based on experimental studies. Gidrotekhnicheskoe Stroitelstvo, No. 3, pp. 46–50, http://dx.doi.org/10.34831/EP.2022.31.74.007. (in Russian)
2. Gusyakov V.K., 2017. Methods and problems of tsunami hazard assessment of marine coasts. Fundamental and Applied Hydrophysics, Vol. 10, No. 3, pp. 26–38, https://doi.org/10.7868/S2073667317030029. (in Russian)
3. Didenkulova I.I., Pelinovsky E.N., 2006. Tsunami-like events in Russian inland waters. Fundamental and Applied Hydrophysics, Vol. 2, No. 3, pp. 52–64. (in Russian)
4. Ivashchenko A.I., Gusyakov V.K., Dzhumagaliev A., Yekh G., Zhukov L.D., Zolotukhin N.D., Kaistrenko V.M., Kato L.N., Klochkov A.A., Korolev Yu.P., KruglyakovA.A., Kulikov E.A., Kurakin V.M., Levin B.W., Pelinovsky E.N., Poplavsky A.A., Titov V.V., Kharlamov V.V., Khramushin V.M., Shelting E.V., 1996. Shikotan tsunami of October 5, 1994. Doklady Akademii Nauk, Vol. 348, No. 4, pp. 532–538. (in Russian)
5. Kantarzhi I.G., Akulinin A.N., 2017. Physical modeling of tsunami waves impact on shore structures. Fundamental and Applied Hydrophysics, Vol. 10, No. 3, pp. 78–90, https://doi.org/10.7868/S2073667317030078. (in Russian)
6. Klyachko M.A., 1993. The concept of reducing the consequences of natural disasters in urban areas and the standard program of preparing for earthquakes. Earthquake Engineering. Constructions Safety, No. 5, pp. 5–10. (in Russian)
7. Klyachko M.A., 2020. Lessons learned from the Neftegorsk earthquake nowadays. GeoRisk World, Vol. XIV, No. 4, pp. 30–40, https://doi.org/10.25296/1997-8669-2020-14-4-30-40. (in Russian)
8. Krasheninnikov S.P., 1949. Description of the land of Kamchatka: with the application of reports and other unpublished materials. Publishing house of the Glavsevmorput, Moscow — Leningrad. (in Russian)
9. Larionov V.I., 1998. Theoretical basis of response to emergencies. In S.K. Shoigu (ed.), Operational forecasting of the engineering situation in emergency situations. Papirus, Moscow, pp. 7–21. (in Russian)
10. Makhinov A.N., Kim V.I., Ostroukhov A.V., Matveenko D.V., 2019. Large landslide in the valley of the Bureya River and tsunami in the reservoir of the Bureya hydroelectric power station. Vestnik of Far Eastern Branch of Russian Academy of Sciences, No. 2(204),
pp. 35–44, https://doi.org/10.25808/08697698.2019.204.2.004. (in Russian)
11. Pinegina T.K., Razzhigaeva N.G, 2013. Paleotsunami studies on the Russian Far East coast. In L.I. Lobkovsky (ed.), World Ocean.
Vol. 1. Geology and tectonics of the ocean. Catastrophic phenomena in the ocean. Nauchniy mir, Moscow, pp. 488–498. (in Russian)
12. Rutman Yu.I., Filkov V.Yu., 2017. Determination of the dynamic coefficient under the tsunami bore impact, on the protective structure of gravitational type. Fundamental and Applied Hydrophysics, Vol. 10, No. 3, pp. 91–96, https://doi.org/10.7868/S207366731703008X. (in Russian)
13. Smyshlyaev A.A., 2003. Ocean night. In collection of papers Red fish time. Novaya kniga, Petropavlovsk-Kamchatsky, pp. 249–320. (in Russian)
14. Solovyov S.L., 1968. The tsunami problem and its significance for Kamchatka and the Kuril Islands. In collection of papers M.A. Sadovsky, A.A. Treskov (eds), Tsunami problem. Nauka, Moscow, pp. 7–50. (in Russian)
15. Figovsky O.L., Beilim D.A., Ponomarev A.N., 2012. Successful implementation of nanotechnologies in building materials. Nanotechnologies in Construction: a Scientific Internet-Journal, Vol. 4, No. 3, pp. 6–21. (in Russian)
16. Asgarizadeh Z., Gifford R., 2022. Community and psychological barriers to tsunami preparation. Natural Hazards, Vol. 112,
pp. 1321–1336, https://doi.org/10.21203/rs.3.rs-762366/v1.
17. Aytore B., Yalciner A.C., Zaytsev A., Cankaya Z., Suzen M.C., 2016. Assessment of tsunami resilience of Haydarpaşa Port in the Sea of Marmara by high-resolution numerical modeling. Earth, Planets and Space, Vol. 68, ID 139,
https://doi.org/10.1186/s40623-016-0508-z.
18. Basili R., Brizuela B., Herrero A., Iqbal S., Lorito S., Maesano F., Murphy S., Perfetti P., Romano F., Scala A., Selva J., Taroni M.,
Tiberti M.M., Thio H.K., Tonini R., Volpe M., Glimsdal S., Harbitz C.B., Løvholt F., Baptista M.A., Carrilho F., Matias L.M., Omira R., Babeyko A.Y., Hoechner A., Gürbüz M., Pekcan O., Yalçıner A., Canals M., Lastras G., Agalos A., Papadopoulos G.,
Triantafyllou I., Benchekroun S., Agrebi Jaouadi H., Ben Abdallah S., Bouallegue A., Hamdi H., Oueslati F., Amato A., Armigliato A., Behrens J., Davies G., Di Bucci D., Dolce M., Geist E., Gonzalez Vida J.M., González M., Macías Sánchez J., Meletti C., Ozer Sozdinler C., Pagani M., Parsons T., Polet J., Power W., Sørensen M.B., Zaytsev A., 2021. The making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18). Frontiers Earth Science, Vol. 8, ID 616594, https://doi.org/10.3389/feart.2020.616594.
19. Bourgeois J., Pinegina T.K., 2018. The 1997 Kronotsky earthquake and tsunami and their predecessors, Kamchatka, Russia. Natural Hazards and Earth System Sciences, Vol. 18, No. 1, pp. 335–350, https://doi.org/10.5194/nhess-18-335-2018.
20. Castro S., Poulos A., Herrera C.J., de la Llera M.J.C., 2019. Modeling the impact of earthquake-induced debris on tsunami evacuation times of coastal cities. Earthquake Spectra, Vol. 35, pp. 137–158, https://doi.org/10.1193/101917EQS218M.
21. Chang S.E., Adams B.J., Alder J., Berke P., Chuenpagdee R., Ghosh S., Wabnitz C.C.C., 2006. Coastal ecosystems and tsunami protection after the December 2004 Indian Ocean tsunami. Earthquake Spectra, Vol. 22, No. S3, pp. 863–887, https://doi.org/10.1193/1.2201971.
22. Chen C., Mostafizi A., Wang H., Cox D., Cramer L., 2022. Evacuation behaviors in tsunami drills. Natural Hazards, Vol. 112,
pp. 845–871, https://doi.org/10.1007/s11069-022-05208-y.
23. Chock G., Carden L.P., Robertson I.N., Olsen M.J., Yu G., 2013. Tohoku tsunami-induced building failure analysis with implications for USA tsunami and seismic design codes. Earthquake Spectra, Vol. 29, No. S1, pp. 99–126, https://doi.org/10.1193/1.4000113.
24. Dogan G.G., Yalciner A.C., Yuksel Y., Ulutaş E, Polat O., Güler I., Şahin C., Tarih A., Kânoğlu U., 2021. The 30 October 2020 Aegean Sea tsunami: post-event field survey along Turkish Coast. Pure and Applied Geophysics, Vol. 178, No. 1, pp. 785–812, https://doi.org/10.1007/s00024-021-02693-3.
25. Edwards C., 2006. Thailand lifelines after the December 2004 Great Sumatra earthquake and Indian Ocean tsunami. Earthquake Spectra, Vol. 22, pp. 641–659, https://doi.org/10.1193/1.2204931.
26. Geist E.L., Parsons T., 2006. Probabilistic analysis of tsunami hazards. Natural Hazards, Vol. 37, pp. 277–314, https://doi.org/10.1007/s11069-005-4646-z.
27. Gibbons S.J., Lorito S., Macías J., Løvholt F., Selva J., Volpe M., Sánchez-Linares C., Babeyko A., Brizuela B., Cirella A., Castro M., de la Asunción M., Lanucara P., Glimsdal S., Lorenzino M.C., Nazaria M., Pizzimenti L., Romano F., Scala A., Tonini R., Manuel González Vida J., Vöge M., 2020. Probabilistic tsunami hazard analysis: high performance computing for massive scale inundation simulations. Frontiers Earth Science, Vol. 8, ID 591549, https://doi.org/10.3389/feart.2020.591549.
28. Gonzalez F., Geist E.L., Jaffe B., Kanoglu U., Mofjeld H.O., Synolakis C.E., Titov V.V., Arcas D.R., Bellomo D., Carlton D., Horning T., Johnson J., Newman J., Parsons T., Peters R., Peterson C.D., Priest G., Venturato A., Weber J., Wong F.L., Yalciner A., 2009. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal Geophysical Research, Vol. 114, Issue C11, ID 023, https://doi.org/10.1029/2008JC005132.
29. Gusiakov V.K., Kikhtenko V.A., Chubarov L.B., Shokin Y.I., 2019. Regional tsunami hazard maps for the Far East coast of Russian Federation built in the framework of the PTHA methodology. Computational Technologies, Vol. 24, No. 1, pp. 55–72, https://doi.org/10.25743/ICT.2019.24.1.005.
30. Gusiakov V.K., Makhinov A., 2021. December 11, 2018 landslide and 90-m icy tsunami in the Bureya water reservoir. In K. Sassa,
M. Mikoš, S. Sassa, P.T. Bobrowsky, K. Takara, K. Dang (eds), Understanding and reducing landslide disaster risk. Vol. 1. Springer, Cham, Switzerland, pp. 351–360, https://doi.org/10.1007/978-3-030-60196-6_25.
31. Ishihara K., 1996. Soil behavior in earthquake geotechnics. Oxford University Press, New York, NY, USA.
32. Iuchi K., Johnson L.A., Olshansky P.B., 2013. Securing Tohoku’s future: planning for rebuilding in the first year following the Tohoku-Oki earthquake and tsunami. Earthquake Spectra, Vol. 29, No. S1, pp. 479–499, https://doi.org/10.1193/1.4000119.
33. Iwasaki T., Tatsuoka F., Tokida K., Yasuda S., 1978. A practical method for assessing soil liquefaction potential base on case studies at various sites in Japan. Proceeding of the 2nd International Conference on microzonation for safer construction research and application, San Francisco, CA, USA, 1978, pp. 885–896.
34. Kaistrenko V., Pinegina T., Klyachko M., 2003. Evaluation of tsunami hazard for the Southern Kamchatka coast using historical and paleotsunami data. In A.C. Yalciner, E. Pelinovsky, E. Okal, C.E. Synolakis (eds), Submarine landslides and tsunamis. Kluwer Academic Publishers, Alphen aan den Rijn, The Netherlands, pp. 217–228, https://doi:10.1007/978-94-010-0205-9_22.
35. Kantarzhi I.G., Gubina N.A., Gusarov R.N., 2021. Effects of long waves on coastal hydraulic structures. Power Technology and Engineering, Vol. 55, No. 2, pp. 219–222, https://doi.org/10.1007/s10749-021-01343-x.
36. Keller A.Z., Wilson H.C., 1989. An evaluation of chemically related disasters using the Bradford disaster scale. ICHemE Symposium Series, No. 124, pp. 1–13.
37. Klyachko M.A., 1993. Application of GIS and scenario techniques to urban areas earthquake risk analysis and mitigation. Earthquake engineering, Proceedings of the 17th European regional Seminar, Haifa, Israel, 1993, pp. 552–555.
38. Klyachko M.A., 1994. Arguments for earthquake hazard mitigation in the Kamchatka Region. In B.E. Tucker, M. Erdik, C.N. Hwang (eds), Issues in urban earthquake risk. Springer, Dordrecht, The Netherlands, pp. 215–219, https://doi.org/10.1007/978-94-015-8338-1_13.
39. Klyachko M., 1995. The development of GIS, EQ-DISC and DIMAK as the best tools for seismic risk analysis on the urban areas. Proceeding of 5th International Conference on seismic zonation, Vol. 1, Nice, France, 1995, pp. 158–165.
40. Klyachko M., Klyachko I., 1996. The DIMAK scale for disaster magnitude measuring in service. Natural disaster reduction, Proceeding of the ASCE Conference, Washington, D.C., USA, 1996, pp. 76–77.
41. Klyachko M., Maksimov V., Nudner I., Filkov V., 2014. On regional standard “Buildings, structures and areas. Safety requirements under tsunami impact”. Proceeding of the 10th U.S. National Conference on earthquake engineering frontiers of earthquake engineering, Anchorage, AK, 2014. URL: https://docs.yandex.ru/docs/view?tm=1673113676&tld=ru&lang=en&name=10NCEE-000441.pdf (accessed: 8 January 2022).
42. Klyachko M.A., Raisman M.M., 1995. Medical aspects of disaster preparedness to strong earthquakes on the Kamchatka. Prehospital and disaster medicine, Abstracts of the Ninth World Congress on disaster and emergency medicine, Vol. 10, No. 3, supplement S2, ID 054, p. 46, https://doi.org/10.1017/S1049023X00501241.
43. Kotitsyna S.S., Kantarzhi I.G., 2021. Destructions in the port caused by tsunami waves. Power Technology and Engineering, Vol. 55, No. S1, pp. 20–25, https://doi.org/10.1007/s10749-021-01313-3.
44. Kuprin A.V., Novakov A.D., Kantarzhi I.G., Gubina N.A., 2021. Local and general scours caused by tsunami waves. Power Technology and Engineering, Vol. 54, No. 6, pp. 836–840, https://doi.org/10.1007/s10749-021-01296-1.
45. Maruyama Y., Yamazaki F., Eeri M., Matsuzaki S., Miura H., Estrada M., 2012. Evaluation of building damage and tsunami inundation based on satellite images and GIS Data following the 2010 Chile earthquake. Earthquake Spectra, Vol. 28, No. S1, pp. 165–178, https://doi.org/10.1193/1.4000023.
46. Mori N., Cox D., Yasuda T., Mase H., 2013. Overview of the 2011 Tohoku earthquake tsunami damage and its relation to coastal protection along the Sanriku Coast. Earthquake Spectra, Vol. 29, No. S1, pp. 127–143, https://doi.org/10.1193/1.4000118.
47. Nudner I., Klyachko M., Maximov V., Filkov V., 2012. About regional standard “Buildings, structures, and areas. Safety requirements under tsunami impact”. Proceedings of 15th World Conference on earthquake engineering, Vol. 11, Lisbon, Portugal, 2012,
рp. 8590–8598.
48. Okal E.A., 2011. Tsunamigenic earthquakes: past and present milestones. Pure and Applied Geophysics, Vol. 168, No. 6–7,
pp. 969–995, https://doi.org/10.1007/s00024-010-0215-9.
49. Papadopoulos G., Imamura F., 2001. A proposal for a new tsunami intensity scale. Proceedings of the 20th International tsunami Conference, Seattle, WA, USA, 2001, No. 5–1, pp. 569–577.
50. Park H., Cox D.Y., Barbosa A.R., 2017. Comparison of inundation depth and momentum flux based fragilities for probabilistic tsunami damage assessment and uncertainty analysis. Coastal Engineering, Vol. 122, No. 2, pp. 10–26, https://doi:10.1016/j.coastaleng.2017.01.008.
51. Robertson I., Chock G., Eeri M., Morla J., 2012. Structural analysis of selected failures caused by the 27 February 2010 Chile tsunami. Earthquake Spectra, Vol. 28, No. S1, pp. 215–243, https://doi.org/10.1193/1.4000035.
52. Ruangrassamee A., Yanagisawa H., Foytong P., Lukkunaprasit P., Koshimura S., Imamura F., 2006. Investigation of tsunami-induced damage and fragility of buildings in Thailand after the December 2004 Indian Ocean tsunami. Earthquake Spectra, Vol. 22, No. S3,
pp. 377–401, https://doi.org/10.1193/1.2208088.
53. Scawthorn C., Ono Y., Iemura H., Ridha M., Purwanto B., 2006. Performance of lifelines in Banda Aceh, Indonesia, during the December 2004 Great Sumatra earthquake and tsunami. Earthquake Spectra, Vol. 22, No. S2, pp. 511–544, https://doi.org/10.1193/1.2206807.
54. Seed H., Idris I.M., 1971. Simplified procedures for evaluating soil li liquefaction potential. Journal of Soil Mechanics and Foundation Engineering, Vol. 97, No. SM9, pp. 1249–1273.
55. Sjöberg F., 2014. The fly trap, translated from Sweden by T. Teal. Particular, London.
56. Suppasri A., Charvet I., Imai K., Imamura F., 2015. Fragility curves based on data from the 2011 Tohoku-Oki tsunami in Ishinomaki City, with discussion of parameters influencing building damage. Earthquake Spectra, Vol. 31, No. 2, pp. 841–868, https://doi.org/10.1193/053013EQS138M.
57. Triantafyllou I., Gogou M., Mavroulis S., Lekkas E., Papadopoulos G.A., Thravalos M., 2021. The tsunami caused by the 30 October 2020 Samos (Aegean Sea) Mw7.0 earthquake: hydrodynamic features, source properties and impact assessment from post-event field survey and video records. Journal of Marine Science and Engineering, Vol. 9, ID 68, https://doi.org/10.3390/jmse9010068.
58. Wood N.J., Church A., Frazier T., Yamal B., 2007. Variations in community exposure and sensitivity to tsunami hazards in the State of Hawai’i. Publishing house of the Geological Survey (U.S.), Reston, VA, USA, https://doi.org/10.3133/sir20075208.
59. Zaytsev A., Kurkin A., Pelinovsky E., Yalciner A.C., 2019. Numerical tsunami model NAMI-DANCE. Science of Tsunami Hazards,
Vol. 38, No. 4, pp. 151–168.
60. Zaytsev A.I., Pelinovsky E.N., Kurkin A.A., Pronin P.I., Yalciner A., Susmoro H., Dogan G., Prasetya G., Hidayat R., Dolgikh G.I., Dolgikh S.G., Zahibo N., 2019. Generation of the 2018 tsunami on Sulawesi Island: possible sources. Doklady Earth Sciences, Vol. 486, No. 1,
pp. 588–592, https://doi.org/10.1134/S1028334X19050295.
MARK A. KLYACHKO*
Regional Alliance for Disaster Analysis and Reduction ANPO; Saint Petersburg, Russia; marfazhirkina@yandex.ru
Address: Bld. 62, Litera A, Sverdlovskaya Emb., 195027, Saint Petersburg, Russia
ANDREY I. ZAYTSEV
Special Research Bureau for Automation of Marine Researches, Far Eastern Branch, Russian Academy of Sciences; Yuzhno-Sakhalinsk, Russia; aizaytsev@mail.ru
Address: Bld. 25, Alekseya Maksimovicha Gorkogo St., 693023, Yuzhno-Sakhalinsk, Russia
TATYANA G. TALIPOVA
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences; Nizhny Novgorod, Russia; tgtalipova@mail.ru
Address: Bld. 46, Ulyanov St., 603950, Nizhny Novgorod, Russia Ilichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences; Vladivostok, Russia
Address: Bld. 43, Baltiyskaya St., 690041, Vladivostok, Russia
EFIM N. PELINOVSKY
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences; Nizhny Novgorod, Russia; pelinovsky@gmail.com
Ilichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences; Vladivostok, Russia
ОПЫТ И ЗАДАЧИ ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ ВОЛН ЦУНАМИ
На сегодняшний день остается актуальной проблема воздействия волн цунами на территории, здания и сооружения, расположенные в прибрежной зоне. Несмотря на редкость этого природного явления, последствия таких воздействий могут быть тяжелыми. ...
ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ НАГРУЗОК НА ПЛАВУЧИЙ ОБЪЕКТ ОТ ВОЗДЕЙСТВИЯ ВОЛН ЦУНАМИ
В статье представлены результаты опытов по физическому моделированию взаимодействия длинных волн типа цунами с плавучим хранилищем газа. Предполагается, что при транспортировке сжиженного природного газа в страны Азии такие хранилища будут ...
ОБЕСПЕЧЕНИЕ УСТОЙЧИВОЙ БЕЗОПАСНОСТИ МОРСКИХ ПОБЕРЕЖИЙ ПРИ ВОЗДЕЙСТВИИ ЦУНАМИ
Статья посвящается 70-летию самого большого стихийного бедствия в российской истории — трагическому цунами 5 ноября 1952 г. на северных Курильских о-вах и п-ове Камчатка. В качестве доказательства высокой опасности цунами ...
ОЦЕНКА ОПОЛЗНЕВОЙ ОПАСНОСТИ ПРИРОДНО-ТЕХНИЧЕСКОЙ СИСТЕМЫ ЭЛЕМЕНТАРНОГО УРОВНЯ НА ПРИМЕРЕ ОПОЛЗНЕВОГО СКЛОНА В КОММУНЕ ЧУНГЧАЙ (ШАПА, ВЬЕТНАМ)
Научно-обоснованный прогноз реакций литосферы на различные виды природных и техногенных воздействий, а также оценка на этой основе оползневой опасности с учетом иерархии природно-технических систем (ПТС) дают возможность правильно спланировать мероприятия ...