Muminov B.Kh., Fomenko I.K., Smirnov P.V., 2022. Landslide hazard assessment of the Nurek District of Tajikistan using the frequency ratio method. Part 1. GeoRisk World, Vol. XVI, No. 3, pp. 36–48, https://doi.org/10.25296/1997-8669-2022-16-3-36-48.
1. Bachmanov D.M., Kozhurin A.I., Trifonov V.G., 2017. The active faults of Eurasia database. Geodynamics and Tectonophysics, Vol. 8,
No. 4, pp. 711–736, https://doi.org/10.5800/GT-2017-8-4-0314. (in Russian)
2. Zerkal O.V., Shomakhmadov A.M., Khuseynov S., Saidov M.S., Ishchuk N.R., 2011. Guidelines for regional disaster risk assessment
on the territory of the Republic of Tajikistan. 3rd ed. dated 18 May 2011 (draft). No publ., Dushanbe. (in Russian)
3. Duong V.B., Fomenko I.K., Vu H.D., Sirotkina O.N., 2022. Landslide susceptibility assessment in Batsat District of Lao Cai Province
using frequency ratio method. The young — for the Earth sciences, Materials of the X International scientific Conference of young
researchers, Vol. 5, Moscow, 2022, pp. 137–141. (in Russian)
4. Duong V.B., Fomenko I.K., Nguyen T.K., Vi T.H.L., Zerkal O.V., Vu H.D., 2022. Application of GIS-based bivariate statistical methods
for landslide potential assessment in Sapa, Vietnam. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, Vol. 333,
No. 4, pp. 126–140, https://doi.org/10.18799/24131830/2022/4/3473. (in Russian)
5. Ishchuk N.R., Ishchuk A.R., Saidov M.S., 2017. Results of using satellite images and GIS in mapping landslides in Tajikistan. Science
and Innovation, No. 2, pp. 92–100. (in Russian)
6. Loskutov V.V., 1962. Geomorphology of Tajikistan. In O.K. Chedia (ed.), The newest stage of geological development of the territory
of Tajikistan (based on materials from the Second republican meeting on the study of the Quaternary period of Tajikistan, September
— October 1960). No publ., Dushanbe. (in Russian)
7. Mammadov S.G., Alakbarova S.O., Hamidova Z.A., Ismaylova L.A., 2017. Investigation of morphometric indicators of the relief of
mudflow basins on the basis of radar satellite images (on the example of Shinchay-Damiraparanchay basins). Bulletin MSRU. Series:
Geographical Environment and Living Systems, No. 2, pp. 59–70, https://doi.org/10.18384/2310-7189-2017-2-59-70. (in Russian)
8. Muminov B.K., Fomenko I.K., Sirotkina O.N., 2022. Landslide hazard assessment of the Norak region of Tadjikistan. Proceedings of
Higher Educational Establishments. Geology and Exploration, No. 64(1), pp. 50–60, https://doi.org/10.32454/0016-7762-2022-64-1-50-
60. (in Russian)
9. National development strategy of the Republic of Tajikistan for the period until 2030, 2016. No publ., Dushanbe. URL: http://ef-ca.tj/
publications/02.2_rus(FILEminimizer).pdf (accessed: 15 August 2022). (in Russian)
10. Pozachenyuk E.A., Petlyukova E.A., 2016. GIS analysis of morphometric indicators of the relief of the central foothills of the Main
Range of the Crimean Mountains for landscape planning purposes. Geography and Geology, Vol. 2(68), No. 2, pp. 95–111. (in Russian)
11. Natural resources of the Tajik SSR, 1984. Publishing house of the State Administration of Geodesy and Cartography of the USSR,
Moscow. (in Russian)
12. Saidov M.S., 2020. Engineering-geological assessment and forecast of hazardous geological processes in the transboundary territory of the Republic of Tajikistan and the Republic of Afghanistan (Lower Pyanj). PhD Thesis, Tajik National University, Dushanbe. (in Russian)
13. Uzakova Sh.N., 2012. Patterns of formation of geo-ecological risks in the area of the Nurek Reservoir of Tajikistan. PhD Thesis, Adyshev Institute of Geology, National Academy of Sciences, Kyrgyz Republic, Bishkek. (in Russian)
14. Yagmurov F., 2020. Safety assessment of Nurek HPP. Molodoy Uchenyy, No. 26(316), pp. 89-92. (in Russian)
15. Asmare D., 2022. Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain,
northwestern Ethiopia. Scientific African, Vol. 19, No. 2, ID e01470, https://doi.org/10.1016/j.sciaf.2022.e01470.
16. Baeza C., Lantada N., Amorim S., 2016. Statistical and spatial analysis of landslide susceptibility maps with different classification
systems. Environmental Earth Sciences, Vol. 75(19), ID 1318, https://doi.org/10.1007/s12665-016-6124-1.
17. Baral N., Karna A.K., Gautam S., 2021. Landslide susceptibility assessment using modified frequency ratio model in Kaski District,
Nepal. International Journal of Engineering and Management Research, Vol. 11, Issue 1, pp. 167–177, https://doi.org/
10.31033/ijemr.11.1.23.
18. Constantin M., Bednarik M., Jurchescu M.C., Vlaici M., 2011. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Sciences, Vol. 63, No. 2, pp. 397–406, https://doi.org/10.1007/s12665-010-0724-y.
19. Evans S.G., Roberts N.J., Ischuk A., Delaney K.B., Morozova G.S., Tutubalina О., 2009. Landslides triggered by the 1949 Khait
earthquake, Tajikistan, and associated loss of life. Engineering Geology, Vol. 109, Issues 3–4, рр. 195–212, https://doi.org/
10.1016/j.enggeo.2009.08.007.
20. Fick S.E., Hijmans R.J., 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of
Climatology, Vol. 37, No. 12, pp. 4302–4315.
21. Havenith H.B., 2014. Hazard and risk related to earthquake-triggered landslide events. Landslide science for a safer geoenvironment,
Proceedings of World Landslide Forum, Vol. 3, Beijing, China, 2014, pp. 197–203, https://doi.org/10.1007/978-3-319-04996-0_31.
22. Khan H., Shafique M., Khan M.A., Bacha A.S., Shah S.U., Calligaris C., 2019. Landslide susceptibility assessment using Frequency
Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Sciences, Vol. 22, Issue 1, pp. 11–24,
https://doi.org/10.1016/j.ejrs.2018.03.004.
23. Khosravi K., Pourghasemi H.R., Chapi K., Bahri M., 2016. Flash flood susceptibility analysis and its mapping using different bivariate
models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and
Assessment, Vol. 188, No. 12, ID 656, https://doi.org/10.1007/s10661-016-5665-9.
24. Koshel S., Mikhalyov O., 2013. New approaches in cartographic relief representation with morphometric variables. Proceedings of 26th International Cartographic Conference, Dresden, Germany, 2013, pp. 743–744.
25. Kumar A., Sharma R.K., Bansal V.K., 2019. GIS-based comparative study of information value and frequency ratio method for landslide hazard zonation in a part of mid-Himalaya in Himachal Pradesh. Innovative Infrastructure Solutions, No. 4, ID 28, https://doi.org/10.1007/s41062-019-0215-2.
26. Małka A., 2021. Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models. Natural
Hazards, Vol. 107, No. 1, pp. 639–674, https://doi.org/10.1007/s11069-021-04599-8.
27. Melese T., Belay T., Andemo A., 2022. Application of analytical hierarchal process, frequency ratio, and Shannon entropy approaches
for landslide susceptibility mapping using geospatial technology: the case of Dejen district, Ethiopia. Arabian Journal of Geosciences,
Vol. 15, ID 424, https://doi.org/10.1007/s12517-022-09672-5.
28. Mind’je R., Li L., Nsengiyumva J.B., Mupenzi C., Nyesheja E.M., Patient M.K., Gasirabo A., Hakorimana E., 2020. Landslide
susceptibility and influencing factors analysis in Rwanda. Environment Development and Sustainability, Vol. 22, No. 6, pp. 7985–8012,
https://doi.org/10.1007/s10668-019-00557-4.
29. Mondal S., Mandal S., 2019. Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model.
Applied Geomatics, Vol. 11, No. 9, pp. 129–146, https://doi.org/10.1007/s12518-018-0248-9.
30. Mukhammadzoda S., Shohnavaz F., Ilhomjon O., Zhang G.C., 2021. Application of frequency ratio method for landslide susceptibility
mapping in the Surkhob Valley, Tajikistan. Journal of Geoscience and Environment Protection, Vol. 9, pp. 168–189,
https://doi.org/10.4236/gep.2021.912011.
31. Pal S.C., Chowdhuri I., 2019. GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River
basin, North Sikkim, India. SN Applied Sciences, Vol. 1, ID 416, https://doi.org/10.1007/s42452-019-0422-7.
32. Panchal S., Shrivastava A.K., 2021. A comparative study of frequency ratio, Shannon’s entropy and analytic hierarchy process (AHP)
models for landslide susceptibility assessment. ISPRS International Journal of Geo-Information, Vol. 10, No. 9, ID 603,
https://doi.org/10.3390/ijgi10090603.
33. Sidorin A.Ya., 2020. On the 70th anniversary of the 1949 Khait Earthquake in Tajikistan. Seismic Instruments, Vol. 56, No. 4,
pp. 491–500, https://doi.org/10.3103/S0747923920040088.
34. Singh P., Sharma A., Sur U., Rai P.K., 2021. Comparative landslide susceptibility assessment using statistical information value and
index of entropy model in Bhanupali-Beri Region, Himachal Pradesh, India. Environment Development and Sustainability, Vol. 23,
рр. 5233–5250, https://doi.org/10.1007/s10668-020-00811-0.
35. Wang L., Zhang C.S., Yang W.M., Sun W.F., Qiu Z.L., Wang T., 2011. Risk assessment of geohazards by using GIS in Gangu County,
Gansu Province. Journal of Geomechanics, Vol. 17, No. 4, pp. 388–401.
36. Wu Y., Li W., Wang Q., Liu Q., Yang D., Xing M., Pei Y., Yan S., 2016. Landslide susceptibility assessment using frequency ratio,
statistical index and certainty factor models for the Gangu County, China. Arabian Journal of Geosciences, Vol. 9, Issue 2, ID 84,
https://doi.org/10.1007/s12517-015-2112-0.
37. Официальный сайт Геологической службы США (USGS), 2022. EarthExplorer. URL: https://www.usgs.gov (дата обращения:
20.05.2020).