Dokukin M.D., Bekkiev M.Yu., Kalov R.Kh., Akaev A.R., 2023. Features of debris flow origination sites at the stage of glacier degradation (a case of debris flow events in 2022 and 2023 in the Caucasus). GeoRisk World, Vol. XVII, No. 3, pp. 24–33, https://doi.org/10.25296/1997-8669-2023-17-3-24-33.
1. Akaev A.R., Shidugov I.J., 2023. Use of UAVs for monitoring exogenous processes in the glacial zone (a case of the Mizhirgi Glacier). Modern problems of geology, geophysics and geoecology of the North Caucasus, Materials of the scientific and technical Conference with International participation, Vol. XIII, Moscow, 2023, https://doi.org/10.26200/GSTOU.2023.54.78.054. (in press) (in Russian)
2. Bekkiev M.Yu., Dokukin M.D., Kalov R. Kh., Akaev A.R., 2023. Identification of signs of preparation of catastrophic slope processes for the prevention of emergency situations. Safety of the population from rapidly developing natural hazards, Proceedings of the XXV International scientific and practical Conference on the problems of protecting the population and territories from emergency situations on the topic (within the framework of the XIV International Salon of security equipment “Integrated Security-2023”), Moscow, 2023, pp. 7–18. (in Russian)
3. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh., Shagin S.I., 2022. Spatial and temporal features of the development of destructive processes in the glacial zone (a case of recent events in the Pamirs, Tibet, and Himalayas). In V.B. Zaalishvili (ed.), Dangerous natural and technogenic processes in mountain regions: models, systems, technologies. Publishing house of the Geophysical Institute of the Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Vladikavkaz, 2022, pp. 362–369, https://doi.org/10.33580/9785904868277_362. (in Russian)
4. Zolotarev E.A., 2009. Evolution of the Elbrus glaciation: cartographic and aerospace technologies of glaciological monitoring. Nauchnyy mir, Moscow. (in Russian)
5. Kondratyeva N.V., Adzhiev A.Kh., Bekkiev M.Yu., Gedueva (Gyaurgieva) M.M., Perov V.F., Razumov V.V., Seynova I.B., Khuchunaeva L.V., 2015. Cadastre of mudflow danger in the south of the European part of Russia, in N.V. Kondratyeva (ed.). Feoria, Moscow. (in Russian)
6. Malneva I.V., Dokukin M.D., Anaev M.A., Akaev A.R., Khadzhiev М.М., 2023. Conditions for the development of slope processes in Kabardino-Balkarian Republic in 2022 and 2023. Prospects for development of engineering survey in Russian Federation, Materials of the 18th All-Russian scientific and practical Conference, Мoscow, 2023, pp. 159–169, https://doi.org/10.25296/978-5-6050369-2-0-2023-12-1-328. (in Russian)
7. Malneva I.V., Dokukin M.D., Kalov R.Kh., Akaev A.R., 2023. Debris flow in Djily-Su tract (Northern Elbrus Region), 4 October 2022: causes and factors. Study of hazardous natural processes and geotechnical monitoring in engineering surveys, Materials of the All-Russian scientific and practical Conference, Мoscow, 2023, pp. 111–118, https://doi.org/10.25296/978-5-6047951-8-7-2023-3-1-155. (in Russian)
8. Perov V.F., 2012. Debris flow science. Publishing house of the Faculty of Geography, Moscow State University, Moscow. (in Russian)
9. Seynova I.B., Zolotarev E.A., 2001. Glaciers and debris flows of the Elbrus region (evolution of glaciation and debris flow activity). Nauchnyy mir, Moscow. (in Russian)
10. Khonin R.V., 1980. On the issue of classification of debris flow origination sites. In collection of papers Debris flows, Issue 4. Gidrometeoizdat, Moscow, pp. 51–56. (in Russian)
11. Allen S., Frey H., Huggel C., 2017. Assessment of glacier and permafrost hazards in mountain regions. Technical guidance document. URL: https://www.researchgate.net/publication/321530454_Assessment_of_Glacier_and_Permafrost_Hazards_in_Mountain_Regions_Technical_Guidance_Document?channel=doi&linkId=5a268aabaca2727dd881377c&showFulltext=true (accessed: 22 August 2023).
12. Mergili M., Jaboyedoff M., Pullarello J., Pudasaini S.P., 2020. Back calculation of the 2017 Piz Cengalo-Bondo landslide cascade with r.avaflow: what we can do and what we can learn. Natural Hazards and Earth System Sciences, Vol. 20, Issue 2, pp. 505–520, https://doi.org/10.5194/nhess-20-505-2020.
13. Shugar D.H., Jacquemart M., Shean D., Bhushan S., Upadhyay K., Sattar A., Schwanghart W., McBride S., Van Wyk de Vries M., Mergili M., Emmer A., Deschamps-Berger C., McDonnell M., Bhambri R., Allen S., Berthier E., Carrivick J.L., Clague J.J., Dokukin M., Dunning S.A., Frey H., Gascoin S., Haritashya U.K., Huggel C., Kääb A., Kargel J.S., Kavanaugh J.L., Lacroix P., Petley D., Rupper S., Azam M.F., Cook S.J., Dimri A.P., Eriksson M., Farinotti D., Fiddes J., Gnyawali K.R., Harrison S., Jha M., Koppes M., Kumar A., Leinss S., Majeed U., Mal S., Muhuri A., Noetzli J., Paul F., Rashid I., Sain K., Steiner J., Ugalde F., Watson C.S., Westoby M.J., 2021. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, Vol. 373, Issue 6552, pp. 300–306,
https://www.science.org/doi/10.1126/science.abh4455.
14. Walter F., Amann F., Kos A., Kenner R., Phillips M., de Preux A., Huss M., Tognacca C., Clinton J., Diehl T., Bonanomi Y., 2020. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology, Vol. 351, ID 106933, https://doi.org/10.1016/j.geomorph.2019.106933.
15. Experts named the cause of the tragedy in Shovi — preliminary conclusion, 2023. URL: https://sputnik-georgia.ru/20230806/ekspertynazvali-prichinu-tragedii-v-shovi-predvaritelnoe-zaklyuchenie-280988283.html (accessed: 22 August 2023).
16. Petley D., 2023. The 4 August 2023 debris flow at Shovi in Georgia. URL: https://eos.org/thelandslideblog/the-4-august-2023-debrisflow-at-shovi-in-georgia (accessed: 22 August 2023).