Болдырев Г.Г., Идрисов И.Х., 2019. О классификации грунтов по данным статического зондирования. Инженерная геология, Том ХIV, № 4, с. 6–23, https://doi.org/10.25296/1993-5056-2019-14-4-6-23.
1. Болдырев Г.Г.,2017. Руководство по интерпретации данных испытаний методами статического и динамического зондирования для геотехнического проектирования. OOO «Прондо», Москва.
2. Болдырев Г.Г., Барвашов В.А., Шейнин В.И., Каширский В.И., Идрисов И.Х., Дивеев А.А., 2019. Информационные системы в геотехнике – 3D-Геотехника. Геотехника, Том ХI, № 2, с. 6–27, https://doi.org/10.25296/2221-5514-2019-11-2-6-27.
3. Рыжков И.Б., Исаев О.Н., 2010. Статическое зондирование грунтов. АСВ, Москва.
4. Abu-Farsakh M.Y., Zhang Z., Tumay M., Morvant M., 2008. Computerized cone penetration test for soil classification: development of MS-Windows software. Journal of the Transportation Research Board, Vol. 2053, Issue 1, pp. 47–64, https://doi.org/10.3141/2053-07.
5. Begemann H.K.S., 1965. The friction jacket cone as an aid in determining the soil profile. Proceedings of the 6th International
Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, 1965, Vol. 1, pp. 17–20.
6. Bhattacharya B., Solomatine D.P., 2006. Machine learning in soil classification. Neural Networks, Vol. 19, Issue 2, pp. 186–195,
https://doi.org/10.1016/j.neunet.2006.01.005.
7. Douglas B.J., Olsen R.S., 1981. Soil classification using electric cone penetrometer. Proceedings of the Conference on Cone Penetration Testing and Experience, Saint Louis, USA, 1981, pp. 209–227.
8. Eslami A., Fellenius B.H., 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, Vol. 34, No. 6, pp. 886–904, https://doi.org/10.1139/t97-056.
9. Fellenius B.H., Eslami A., 2000. Soil profile interpreted from CPTu data. Year 2000 Geotechnics, Proceedings of the Geotechnical Engineering Conference, Bangkok, Thailand, 2000, pp. 27–30.
10. Ghaderi A., Shahri A.A., Larsson S., 2019. An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu). Bulletin of Engineering Geology and the Environment, Vol. 78, No. 6,pp. 4579–4588, ttps://doi.org/10.1007/s10064-018-1400-9.
11. Jefferies M.G., Davies M.P., 1991. Soil classification by the cone penetration test: Discussion. Canadian Geotechnical Journal, Vol. 28, No. 1, pp. 173–176, https://doi.org/10.1139/t91-023.
12. Kurup P.U., Griffin E.P., 2006. Prediction of soil composition from CPT data using general regression neural network. Journal
of Computingin Civil Engineering, Vol. 20, No. 4, pp. 281–289, https://doi.org/10.1061/(ASCE)0887-3801(2006)20:4(281).
13. Olanloye D.O., 2014. An intelligent system for soil classification using unsupervised learning approach. International Journal
of Computer Applications, Vol. 105, No. 11, pp. 21–27.
14. Olsen R.S., Mitchell J.K., 1995. CPT stress normalization and prediction of soil classification. Proceedings of the International
Symposium on Cone Penetration Testing, Linköping, Sweden, 1995, Vol. 2, pp. 257–262.
15. Ramsey N., 2002. A calibrated model for the interpretation of cone penetration tests (CPTs) in North Sea Quaternary soils. Offshore Site Investigation and Geotechnics “Diversity and Sustainability”, Proceedings of the International Conference, London, UK, 2002,
pp. 341–356.
16. Robertson P.K., 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151–158, https://doi.org/10.1139/t90-014.
17. Robertson P.K., 2009. Interpretation of cone penetration tests — a unified approach. Canadian Geotechnical Journal, Vol. 46, No. 11, pp. 1337–1355, https://doi.org/10.1139/T09-065.
18. Robertson P.K., 2016. Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — an update. Canadian Geotechnical Journal, Vol. 53, No. 12, pp. 1910–1927, https://doi.org/10.1139/cgj-2016-0044.
19. Robertson P.K., Campanella R.G., Gillespie D., Greig J., 1986. Use of piezometer cone data. Use of In Situ Tests in Geotechnical
Engineering, Proceedings of the “In SITU’86” Specialty Conference, Blacksburg, Virginia, USA, 1986, pp. 1263–1280.
20. Sanglerat G., Nhiem T.V., Sejourne M., Andina R., 1974. Direct soil classification by static penetrometers with special friction sleeve. ESOPT-I, Proceedings of the 1st European Symposium on Penetration Testing, Stockholm, Sweden, Vol. 2.2, pp. 337–344.
21. Schneider J.A., Hotstream J.N., Mayne P.W., Randolph M.F., 2012. Comparing CPTU Q-F and Q-Δu2/σv0 ′ soil classification charts. Géotechnique Letters, Vol. 2, Issue 4, pp. 209–215, https://doi.org/10.1680/geolett.12.00044.
22. Schneider J.A., Randolph M.F., Mayne P.W., Ramsey N.R., 2008. Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, Isuue 11, pp. 1569–1586, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:11(1569).
23. Tonni L., Simonini P., 2013. Shear wave velocity as function of cone penetration test measurements in sand and silt mixtures. Engineering Geology, Vol. 163, pp. 55–67, https://doi.org/10.1016/j.enggeo.2013.06.005.
24. Tumay M.T., Abu-Farsakh M.Y., Zhang Z., 2008. From theory to implementation of a CPT-based probabilistic and fuzzy soil
classification. From Research to Practice in Geotechnical Engineering, pp. 259–276, https://doi.org/10.1061/40962(325)5.
25. Vos J.D., 1982. The practical use of CPT in soil profiling. ESOPT-II, Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, Netherlands, 1982, pp. 933–939.
26. Zhang Z., Tumay M.T., 1999. Statistical to fuzzy approach toward CPT soil classification. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, Issue 3, pp. 179–186, https://doi.org/.10.1061/(ASCE)1090-0241(1999)125:3(179).